ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 22, 2014
Accepted April 3, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Graphene의 물리적 분산과 화학적 표면 개질 연구

A Study on Physical Dispersion and Chemical Modification of Graphene

전남대학교 바이오에너지 및 바이오소재 협동과정, 61033 광주광역시 북구 용봉동 300 1전남대학교 환경공학과, 61033 광주광역시 북구 용봉동 300
Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University, Gwangju 61033, Korea 1Department of Environment and Energy engineering, Chonnam National University, Gwangju 61033, Korea
seongjun@jnu.ac.kr
Korean Chemical Engineering Research, December 2015, 53(6), 792-797(6), 10.9713/kcer.2015.53.6.792 Epub 30 November 2015
downloadDownload PDF

Abstract

그래핀은 다양하고 뛰어난 물성으로 그 적용 분야가 넓다. 그러나 반델반스 상호 작용으로 유기용매 내에서 쉽게 분산되지 않고 뭉쳐 있거나 포개진 상태로 존재한다. 게다가 그래핀은 화학적으로 비활성이며 크기나 모양이 넓은 분포도를 가지므로 균일한 상태 유지가 어렵다. 본 연구에서는 덩어리로 구성된 그래핀을 용매에 분산시키고 개질시키는 방법에 대해서 고찰하였다. 분산방법으로서 i) 유리비드를 이용한 물리적 분쇄. ii) 유리비드와 초음파를 이용한 처리 iii)유기용매에서의 분산 iv)드라이아이스를 이용한 개질법이 포함된다. 2.5 mm 크기의 유리비드처리는 대조구와 비교하여 36.4%의 감소율을 나타내었다. 유리비드(2.5 mm)와 초음파(225W, 10분) 병용 처리구가 76%로 입자 크기 감소효과를 나타내었다. 그래핀 입자 크기감소는 유리비드의 크기와 초음파 처리강도와 처리시간에 의존되었다. Ethyl acetate(EA)와 Isoprophyl alcohol(IPA)의 용매로 그래핀 표면을 개질시켰다. IPA용매에서 FT-IR 분석결과 CO 작용기가 높게 나타남으로 확인할 수 있었다. 한편, 드라이아이스로 그래핀 표면을 개질시킨 결과 처리 전 산소함량이 0.80% 에서 처리 후 4.90%로 산소 함량 크게 증가되었다. 본 연구 결과로부터 IPA용매에 그래핀을 분산시킬 때 CO 작용기 가 증가하여 장시간 분산상태 유지에 도움이 되는 것으로 판단된다.
Graphene has a wide spectrum on its application field due to various and excellent physical properties. However, it is very difficult to apply that graphene exists as lump or fold condition in general organic solvents. Besides, graphene was difficult to maintain as uniform condition due to chemical inert and distributions with various size and shapes. Therefore, this study was focused to study dispersion and modifying methods of aggregated graphene. The dispersion methods contain as follow: i) physical milling using glass bead, ii) co-treatment of glass bead and ultrasonic waves, iii) dispersion in organic solvents, iv) modifying with dry-ice. Milling using glass bead with size 2.5 mm was effective to be size decrease of 36.4% in comparison with control group. Mixed treatment of glass bead (size 2.5 mm) and ultrasonic waves (225W, 10 min) showed relative size decrease of 76%, suggesting that the size decrease depends on the size of glass bead, intensity of ultrasonic waves and treatment time. Solvents of Ethyl acetate (EA) and Isoprophyl alcohol (IPA) were used in order to improve dispersion by modifying surface of graphene. IPA of them showed a favorable dispersion with more -CO functional groups in the FT-IR analysis. On the other hand, the oxygen content of graphene surface modified by dry-ice was highly increased from 0.8 to 4.9%. From the results, it was decided that the favorable dispersion state for a long time was obtained under the condition of -CO functional group increase in IPA solvent.Graphene, Dispersion, Modification, Sonification, Dry ice

References

Zhang Y, Tan JW, Stormer KL, Kim P, Nature, 438, 201 (2005)
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
Lu Y, Goldsmith BR, Kybert NJ, Johnson ATC, Appl. Phys. Lett., 97, 083107 (2010)
Bi H, Huang FQ, Liang J, Xie XM, Jiang MH, Adv. Mater., 23(28), 3202 (2011)
Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'homme RK, Brinson LC, Nat. Nanotechnol., 3(6), 327 (2008)
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC, Science, 282, 95 (1998)
Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc., 130(18), 5856 (2008)
Chen RJ, Zhan YG, Wang DW, Dai HJ, J. Am. Chem. Soc., 123(16), 3838 (2001)
Chunder A, Liu JH, Zhai L, Macromol. Rapid Commun., 31(4), 380 (2010)
Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN, J. Am. Chem. Soc., 131(10), 3611 (2009)
Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR, Angew. Chem.-Int. Edit., 50, 3173 (2011)
Yim EC, Kim SJ, Oh IK, Kee CD, Korean Chem. Eng. Res., 51(3), 1 (2013)
Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baek JB, “Edge-carboxylated Graphene Nanosheets Via Ball Milling,” Proceedings of the National Academy of Sciences of the United States of America PNAS, vol. 109 no. 15.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로