ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 2, 2015
Accepted March 27, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

(+)-Dihydromyricetin 분별침전에 미치는 제타전위의 영향

Influence of Zeta Potential on Fractional Precipitation of (+)-Dihydromyricetin

공주대학교 화학공학부, 31080 충남 천안시 서북구 천안대로 1223-24
Department of Chemical Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan 31080, Korea
Korean Chemical Engineering Research, December 2015, 53(6), 831-835(5), 10.9713/kcer.2015.53.6.831 Epub 30 November 2015
downloadDownload PDF

Abstract

본 연구에서는 바이오매스 유래 생리활성물질인 (+)-dihydromyricetin을 정제하기 위한 분별침전공정에서 분별침전용액의 제타전위가 분별침전 양상(순도, 수율, 침전물 형태와 크기)에 미치는 영향을 조사하였다. 제타전위 조절을 위한 실리카-알루미나의 첨가량(반응액 부피당 표면적) 100 mm-1에서 가장 높은 수율을 얻을 수 있었다. 실리카-알루미나의 제타전위가 양(+)의 값으로 증가할수록 (+)-dihydromyricetin 수율과 침전물의 크기는 증가하였다. 가장 큰 제타전위 값(+4.99 mV)을 가진 실리카를 이용한 분별침전의 경우에는 가장 작은 제타전위 값(-19.00 mV)을 가진 알루미 나를 이용한 분별침전의 경우보다 2배 이상 높은 수율을 얻을 수 있었다. 또한 분별침전 과정에서 제타전위 절대값이 증가할수록 (+)-dihydromyricetin 수율과 침전물의 크기는 감소하여 제타전위 절대값에 반비례함을 알 수 있었다. 반면 표면적증가물질 실리카-알루미나의 제타전위 변화에도 (+)-dihydromyricetin 순도는 거의 변화가 없었다.
This study evaluated the influence of the zeta potential of silica-alumina on the behavior in terms of purity, yield, and precipitate shape and size of fractional precipitation in the fractional precipitation process for the purification of (+)-dihydromyricetin. The optimal silica-alumina amount (surface area per working volume of reacting solution) for zeta potential control was 100 mm-1. As the zeta potential value of silica-alumina increased, (+)-dihydromyricetin yield and precipitate size were increased. The use of silica with the highest value of the zeta potential (+4.99 mV) as a zeta potential-controlling material increased the (+)-dihydromyricetin yield by 2-fold compared with that of the use of alumina with the lowest value of the zeta potential (-19.00 mV). In addition, the (+)-dihydromyricetin yield and precipitate size was inversely correlated with the absolute value of the zeta potential. On the other hand, the purity of (+)-dihydromyricetin had almost no effect on changes in the zeta potential of silica-alumina.

References

An SW, Kim YG, Kim MH, Lee BI, Lee SH, Kwon HI, Hwang B, Lee HY, Korean J. Medicinal. Crop. Sci., 7, 263 (1999)
Hase K, Basnet P, J. Trad. Med., 14, 28 (1997)
Lee MK, Kim YG, An SW, Kim MH, Lee JH, Lee HY, Korean J. Medicinal. Crop. Sci., 7, 185 (1999)
Sakai K, Yamane T, Saitoh Y, Ikawa C, Nishihata T, Chem Pharm Bull, 35, 4597 (1987)
Yoo SM, Mun S, Kim JH, Process Biochem., 41, 567 (2006)
Du Q, Cai W, Xia M, Ito Y, J. Chromatogr. A, 973, 217 (2002)
Yohsikawa M, Murakami T, Ueda T, Yoshizumi S, Ninomiya K, Murakami N, et al., Yakugaku Zasshi., 117, 108 (1997)
Song X, Ren Q, “Preparation and Application of Dihydromyricetin,” CN. Patent No. 1,288,892(2001).
Zhang Y, “Process for Preparing Dihydromyricetin from Porcelain Ampelopsis,” CN. Patent No. 1,393,443(2003).
Lee KH, Kim JH, Biotechnol. Bioeng., 13, 274 (2008)
Lim MK, Kim JH, Biotechnol. Bioeng., 42, 25 (2014)
Han MG, Kim JH, Biotechnol. Bioeng., 17, 1018 (2012)
Ryu HK, Kim JH, Biotechnol. Bioeng., 42, 114 (2014)
Jeon YL, Kim JH, Korean J. Chem. Eng., 30(10), 1954 (2013)
Gregg SJ, Sing KSW, “Adsorption, Surface Area and Porosity,” 2nd ed. Academic Press. New York., pp. 41-110(1982).
Cho EB, Cho WK, Cha KH, Park JS, Int. J. Pharm., 396, 91 (2010)
Ahmed T, Marcal H, Lawless M, Wanandy NS, Chiu A, Foster LJR, Biomacromolecules, 11(10), 2707 (2010)
Doi Y, Seibunkaisei koubunshi zairyou, Kougyoutyousakai, 1992.
Jikken kagaku kouza 29 koubunshi zairyou, Nihon kagakukai, 1989.
Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK, J. Biomed. Mater. Res., 60, 613 (2002)
Dhandayuthapani B, Krishnan UM, Sethuraman SJ, J. Biomed. Mater. Res., 94, 264 (2010)
Philip S, Keshavarz T, Roy I, J. Chem. Technol. Biotechnol., 82(3), 233 (2007)
Loh XJ, Tan KK, Li X, Li J, Biomaterials, 27, 1841 (2006)
Foster LJR, Sanguanchaipaiwong V, Gabelish CL, Hook J, Stenzel M, Polymer, 46(17), 6587 (2005)
Abe Y, Tsuchida H, Koubunshi to saiboumaku no sougosayou, Kyouritu Syuppan, 1998.
Ikada Y, Biomaterial nyumon, 1994.
Zhao K, Deng Y, Chen JC, Chen GQ, Biomaterials, 24, 1041 (2003)
Chen GQ, Wu Q, Biomaterials, 26, 6565 (2005)
Iyou zairyou no kagaku, Nihon kagakukai, 1978.
Pierschbacher MD, Ruoslahti E, Nature, 309, 30 (1984)
Bhat VD, Truskey GA, Reichert WM, J. Biomed. Mater. Res., 41, 377 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로