Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 17, 2015
Accepted September 17, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화
Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology
전남대학교 생물공학과 바이오에너지 및 바이오소재 협동과정, 61186 광주광역시 북구 용봉로 77 1극지연구소 극지생명과학연구부, 21990 인천광역시 연수구 송도미래로 26
Department of Biotechnology and Bioengineering, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Korea 1Division of Life Sciences, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Korea
choiji01@jnu.ac.kr
Korean Chemical Engineering Research, February 2016, 54(1), 140-144(5), 10.9713/kcer.2016.54.1.140 Epub 12 February 2016
Download PDF
Abstract
본 연구에서는 극지 연구소로부터 분양 받은 Arthrobacter sp. PAMC 27388 균주에서 생산되는 아밀라아제(amylase)를 물리적 요인(physical factor)들의 변화를 통하여 생산배지 최적화를 수행하였다. 한천 배지 상에서 lugol solution을 이용한 클린환의 확인을 통하여 아밀라아제가 생산됨을 확인하였으며, 16S rDNA를 이용하여 동정한 결과 Arthrobacter sp. 임을 확인할 수 있었다. 최적화 이전의 아밀라아제 생산량은 1.66 mU/L로 확인되었다. 최적화 결과, 2.49 mL의 접종부피, pH 6.85, 42.87 mL의 배지 부피의 조건에서 가장 많은 양의 아밀라아제가 생산될 것으로 예상되었으며, 생산량은 2.84 mU/L로 예상되었다. 확인 실험을 통하여 최적화 이전과 비교하여 생산량이 약 150% 증가한 2.50 mU/L의 아밀라아제가 생산됨을 확인할 수 있었다.
In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol`s solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.
References
Dastager SG, Dayanand A, Li WJ, Kim CJ, Lee JC, Park DJ, Tian XP, Raziuddin QS, Curr. Microbiol., 57(6), 638 (2008)
Gomes J, Steiner W, Food Technol. Biotechnol., 42, 223 (2004)
Feller G, Gerday C, Nat. Rev. Microbiol., 1, 200 (2003)
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR, Curr. Opin. Biotechnol., 13, 253 (2002)
Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G, Trends Biotechnol., 18, 103 (2000)
Huston AL, “Biotechnological Aspects of Cold-adapted Enzymes,” In Psychrophiles: from Biodiversity to Biotechnology, Springer. Berlin. Heidelberg, pp. 347-363(2008).
Peng Y, Yang XJ, Zhang YZ, Appl. Microbiol. Biotechnol., 69(2), 126 (2005)
Anto H, Trivedi U, Patel K, Food Technol. Biotechnol., 44, 241 (2006)
Irfan M, Nadeem M, Syed Q, J. Cell. Molecular Biology, 10, 55 (2012)
Pandey A, Nigam P, Soccol CRVT, Soccol V, Singh D, Mohan R, Biotechnol. Appl. Biochem., 31, 135 (2000)
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B, Process Biochem., 38, 1599 (2003)
Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G, Process Biochem., 38, 1397 (2003)
Haki GD, Rakshit SK, Bioresour. Technol., 89(1), 17 (2003)
Tonkova A, Microbial Biotechnology in Horticulture, 1, 421 (2006)
Puri S, Beg QK, Gupta R, Curr. Microbiol., 44(4), 286 (2002)
Adinarayana K, Ellaiah P, J. Pharm. Sci., 5, 272 (2002)
Hanlon GW, Hodges NA, Russell AD, J. Gene. Microbiol., 128, 845 (1982)
Lane DJ, “16S-23S rRNA Sequencing,” In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, pp. 115-175(1991).
Sumner JB, Howell SF, J. Biol. Chem., 108, 51 (1935)
Zhong G, Wang Y, Xu C, Wei D, Yang X, China Brewing, 9, 019 (2011)
Tanyildizi MS, Elibol M, Ozer D, J. Chem. Technol. Biotechnol., 81(4), 618 (2006)
Stergiou PY, Foukis A, Theodorou L, Papagianni M, Papamichael E, Br. Archives Biol.Technol., 57, 421 (2014)
Sivakumar K, Karuppiah V, Sethubathi GV, Thangaradjou T, Kannan L, Biologia, 67, 32 (2012)
Venil CK, Lakshmanaperumalsamy P, Pakistan J. Sci. Ind. Res., 51, 333 (2008)
Kim HD, Yun CW, Choi JI, Han SJ, Korean Chem. Eng. Res., 53(4), 524 (2015)
Kim H, Choi J, Han SJ, Korean Chem. Eng. Res., 52(6), 834 (2014)
Gomes J, Steiner W, Food Technol. Biotechnol., 42, 223 (2004)
Feller G, Gerday C, Nat. Rev. Microbiol., 1, 200 (2003)
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR, Curr. Opin. Biotechnol., 13, 253 (2002)
Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G, Trends Biotechnol., 18, 103 (2000)
Huston AL, “Biotechnological Aspects of Cold-adapted Enzymes,” In Psychrophiles: from Biodiversity to Biotechnology, Springer. Berlin. Heidelberg, pp. 347-363(2008).
Peng Y, Yang XJ, Zhang YZ, Appl. Microbiol. Biotechnol., 69(2), 126 (2005)
Anto H, Trivedi U, Patel K, Food Technol. Biotechnol., 44, 241 (2006)
Irfan M, Nadeem M, Syed Q, J. Cell. Molecular Biology, 10, 55 (2012)
Pandey A, Nigam P, Soccol CRVT, Soccol V, Singh D, Mohan R, Biotechnol. Appl. Biochem., 31, 135 (2000)
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B, Process Biochem., 38, 1599 (2003)
Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G, Process Biochem., 38, 1397 (2003)
Haki GD, Rakshit SK, Bioresour. Technol., 89(1), 17 (2003)
Tonkova A, Microbial Biotechnology in Horticulture, 1, 421 (2006)
Puri S, Beg QK, Gupta R, Curr. Microbiol., 44(4), 286 (2002)
Adinarayana K, Ellaiah P, J. Pharm. Sci., 5, 272 (2002)
Hanlon GW, Hodges NA, Russell AD, J. Gene. Microbiol., 128, 845 (1982)
Lane DJ, “16S-23S rRNA Sequencing,” In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, pp. 115-175(1991).
Sumner JB, Howell SF, J. Biol. Chem., 108, 51 (1935)
Zhong G, Wang Y, Xu C, Wei D, Yang X, China Brewing, 9, 019 (2011)
Tanyildizi MS, Elibol M, Ozer D, J. Chem. Technol. Biotechnol., 81(4), 618 (2006)
Stergiou PY, Foukis A, Theodorou L, Papagianni M, Papamichael E, Br. Archives Biol.Technol., 57, 421 (2014)
Sivakumar K, Karuppiah V, Sethubathi GV, Thangaradjou T, Kannan L, Biologia, 67, 32 (2012)
Venil CK, Lakshmanaperumalsamy P, Pakistan J. Sci. Ind. Res., 51, 333 (2008)
Kim HD, Yun CW, Choi JI, Han SJ, Korean Chem. Eng. Res., 53(4), 524 (2015)
Kim H, Choi J, Han SJ, Korean Chem. Eng. Res., 52(6), 834 (2014)