ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 30, 2015
Accepted December 8, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

상지대학교 정밀화학신소재학과, 26339 강원도 원주시 상지대길 83
Department of Fine Chemistry and Advanced Materials, Sangji University, 83, Sangjidae-gil, Wonju, Gangwon, 26339, Korea
chsim@sangji.ac.kr
Korean Chemical Engineering Research, February 2016, 54(1), 44-51(8), 10.9713/kcer.2016.54.1.44 Epub 12 February 2016
downloadDownload PDF

Abstract

전도성 물질인 철 입자(iron particles)를 절연체로 코팅하여 제작한 압분자심(powder core)은 비저항이 작기 때문에 고주파 영역에서 와전류 손실이 크다. 이 결함을 해결하기 위해서는 압분자심의 비저항을 증가시킬 필요가 있다. 이 연구에서는 압분자심의 비저항을 증가시키기 위하여 유성볼밀을 사용하여 전기전도성 철 입자에 산화제2구리를 코팅하였다. 반응표면분석법을 사용하여 코팅변수를 최적화하였다. 최적화 시 인자는 CuO 질량분율, 밀 회전 수, 코팅시간, 볼 크기, 볼 질량, 시료 질량이며, 반응변수는 비저항이었다. 6인자-일부요인배치법에 의하면 주된 인자는 CuO 질량분율, 밀 회전 수, 코팅시간이었다. 3-인자 완전요인배치법과 최대경사법을 사용하여 3개 인자의 수준을 선정하였다. 최대경사법을 사용하여 최고의 비저항을 갖는 영역에 접근하였다. 최종적으로 Box-Behnken법을 사용하여 스크린한 인자들의 반응표면을 분석하였다. Box-Behnken법 결과에 의하면 CuO 질량분율과 밀 회전 수가 코팅공정 효율에 영향을 주는 주요 인자이었다. CuO 질량분율이 증가함에 따라 비저항은 증가하였다. 그에 반해서 밀 회전 수가 감소함에 따라 비저항은 증가하였다. 코팅공정을 최적화한 모델로부터 계산한 예측값과 실험값과는 통계적으로 유의하게 일치하였다(Adj-R2=0.944). 비저항의 최고값을 갖는 코팅조건은 CuO 질량분율은 0.4, 밀 회전 수는 200 rpm, 코팅시간은 15분이었다. 이 조건에서 코팅한 정제의 비저항 측정값은 530 kΩ·cm이었다.
The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

References

Tajima S, Hattori T, Kondoh M, Kishimoto H, Sugiyama M, Kitto T, J. Jpn. Soc. Powder Metallurgy, 52(3), 164 (2005)
Chen SF, Chang HY, Wang SJ, Chen SH, Chen CC, J. Alloy. Compd., 637, 30 (2015)
Sunday KJ, Darling KA, Hanejko FG, Anasori B, J. Alloy. Compd., 653, 61 (2015)
Taghvaei AH, Ebrahimi A, Ghaffari M, Janghorban K, J. Magn. Magn. Mater., 323, 150 (2011)
Gramatyka P, Kolano-Burian A, Kolano R, Polak M, J. Achieve. Mater. Manuf. Eng., 18 (2006)
Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17 (2005)
Taghvaei AH, Shokrollahi H, Ghaffari M, Janghorban K, J. Phys. Chem. Solids, 71, 7 (2010)
Hemmati I, Hosseini HRM, Kianvash A, J. Magn. Magn. Mater., 305, 147 (2006)
Streckova M, Fuzer J, Medvecky L, Bures R, Kollar P, Faberova M, Girman V, Bull. Mat. Sci., 37, 167 (2014)
Liu W, Zhong W, Jiang H, Tang N, Wu X, Du Y, Surf. Coat. Technol., 200, 5170 (2006)
Streckova M, Medvecky L, Fuzer J, Kollar P, Bures R, Faberova M, Mater. Lett., 101, 37 (2013)
Yaghtin M, Taghvaei AH, Hashemi B, Jangborban K, J. Alloy. Compd., 581, 293 (2013)
Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P, Chin. J. Chem. Eng., 23, 736 (2015)
Fujimoto T, Yamauchi J, Yamanaka S, Kuka Y, J. Soc. Powder Technol. Jpn., 50, 398 (2013)
Taghvaei AH, Ebrahimi A, Ghaffari M, Janghorban K, J. Magn. Magn. Mater., 322, 3748 (2010)
Brunckova H, Kabatova M, Dudrova E, Surf. Interface Anal., 42, 13 (2010)
Jay F, Gauthier V, Dubois S, J. Am. Ceram. Soc., 89(11), 3522 (2006)
Asao K, Yoshioka Y, Watano S, J. Soc. Powder Technol. Jpn., 49, 521 (2012)
Sim CH, Food Eng. Prog., 15(2), 97 (2011)
Kim DS, Park YS, J. Korean Soc. Water Qual., 26(1), 35 (2010)
Lee SH, Data Analysis of Engineering Statistics Using Minitab, revision, Iretec Inc., Kunpo, ROK, 647-778(2008).
Park SH, Design of Experiments, Minyoungsa, Seoul, 453-504 (2005).
Geravand E, Shariatinia Z, Yaripour F, Sahebdelfar S, Korean J. Chem. Eng., 32(12), 2418 (2015)
Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661 (2010)
Khamforoush M, Asgari T, Hatami T, Dabirian F, Korean J. Chem. Eng., 31(9), 1695 (2014)
Mahdizadeh F, Eskandarian M, Zabarjadi J, Ehsani A, Afshar A, Korean J. Chem. Eng., 31(1), 74 (2014)
Park JC, Ha DM, Kim MG, Korean J. Chem. Eng., 13(2), 115 (1996)
Chemical Society of Japan, Chemistry H/B, Revised 2nd ed., Maruzen Co., Ltd, Tokyo, 55-139, 1155(1975).
Malvern, Sample Dispersion & Refractive Index Guide, version 3.1, Malvern Instruments Ltd., England, 2.1-2.14(1997).
Box GEP, Behnken DW, Technometrics, 2(4), 455 (1960)
Song RK, SAS/STAT Regression, 3rd ed., Freedom Academy, Pajoo, 141-282(2004).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로