Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 21, 2015
Accepted November 3, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성
Electrochemical Properties of Porous Co(OH)2 Nano-flake Thin Film Prepared by Electro-deposition for Supercapacitor
충북대학교 화학공학과, 28644 충북 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
smjeong@chungbuk.ac.kr
Korean Chemical Engineering Research, April 2016, 54(2), 157-162(6), 10.9713/kcer.2016.54.2.157 Epub 5 April 2016
Download PDF
Abstract
다공성 Co(OH)2 나노플레이크 박막은 전위제어 전착법을 이용하여 티타늄 메쉬에 여러 전착전위(-0.75, -1.0, -1.2 및 -1.4 V)에서 전착하여 슈퍼커패시터에 이용하였다. 티타늄 메쉬에 전착된 Co(OH)2 나노플레이크 박막의 두께 및 전착량은 전착전위의 제어에 의해 결정되었고 -1.4 V에서 전착한 Co(OH)2 나노플레이크 박막의 두께는 약 34 μm로 가장 두껍게 전착되었으며 전착량은 17.2 g이다. 전착전위 -0.75, -1.0, -1.2 및 -1.4 V에서 전착한 경우 초기 방전용량은 각각 226, 370, 720 그리고 1,008 mF cm-2으로 나타났고 1,000 사이클 후 각각 206, 349, 586 그리고 866 mF cm-2으로 나타났다. 또한 이들의 용량유지율은 각각 91, 94, 81 및 86%로 나타났다.
Porous Co(OH)2 nano-flake thin films were prepared by a potential-controlled electro-deposition technique at various deposition voltage (-0.75, -1.0, -1.2, and -1.4 V) on Ti-mesh substrates for supercapacitor application. The potential of electrode was controlled to regulate the film thickness and the amount of Co(OH)2 nano-flake on the titanium substrate. The film thickness was shown to reach the maximum value of 34 μm at -1.4 V of electrode potential, where 17.2 g of Co(OH)2 was deposited on the substrate. The specific discharge capacitances were measured to be 226, 370, 720, and 1008 mF cm-2 in the 1st cycle corresponding to the films which were formed at -0.75, -1.0, -1.2, and -1.4 V of electrode potentials, respectively. Then the discharge capacities were decreased to be 206, 349, 586 and 866 mF/cm2, where the persistency rates were 91, 94, 81, and 86%, respectively.
References
Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632 (2012)
Miller JR, Burke AF, Electrochem. Soc. Interface, 17(1), 53 (2008)
Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730 (2008)
Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
Choi BG, Huh YS, Hong WH, Korean Chem. Eng. Res., 50(4), 754 (2012)
Shinde NM, Jagadale AD, Kumbhar VS, Rana TR, Kim JH, Lokhande CD, Korean J. Chem. Eng., 32(5), 974 (2015)
Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A., Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 24, 1537 (2011)
Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F, J. Power Sources, 153(2), 413 (2006)
Jeong H, Jeong SM, Korean Chem. Eng. Res., 53(2), 131 (2015)
Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632 (2012)
Nagarajan N, Humadi H, Zhitomirsky I, Electrochim. Acta, 51(15), 3039 (2006)
Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF, Adv. Mater., 23(6), 791 (2011)
Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Mater. Chem., 21, 9319 (2011)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Hu CC, Wang CW, Chang KH, Chen MG, Nanotechnology, 26(27), 274004 (2015)
Jayashree RS, Kamath PV, J. Mater. Chem., 9(4), 961 (1999)
Ramesh TN, Rajamathi M, Kamath PV, Solid State Sci., 5(5), 751 (2003)
Wang R, Yan X, Lang J, Zheng Z, Zhang P, J. Mater. Chem. A, 2, 12724 (2014)
Zhao CM, Wang X, Wang SM, Wang YY, Zhao YX, Zheng WT, Int. J. Hydrog. Energy, 37(16), 11846 (2012)
He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF, Electrochem. Commun., 12(4), 570 (2010)
Luo HM, Zhang FB, Zhao X, Zhang DY, Sun YX, Yang P, J. Mater. Sci. -Mater. Electron., 24(7), 2473 (2013)
Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860 (2011)
Gupta V, Kusahara T, Toyama H, Gupta S, Miura N, Electrochem. Commun., 9(9), 2315 (2007)
Chang JK, Wu CM, Sun IW, J. Mater. Chem., 20, 3729 (2010)
Peng C, Jin J, Chen GZ, Electrochim. Acta, 53(2), 525 (2007)
Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853 (2004)
Kong LB, Lang JW, Liu M, Luo YC, Kang L, J. Power Sources, 194(2), 1194 (2009)
Tao F, Shen Y, Liang Y, Li H, J. Solid State Electrochem., 11, 853 (2007)
Miller JR, Burke AF, Electrochem. Soc. Interface, 17(1), 53 (2008)
Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730 (2008)
Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
Choi BG, Huh YS, Hong WH, Korean Chem. Eng. Res., 50(4), 754 (2012)
Shinde NM, Jagadale AD, Kumbhar VS, Rana TR, Kim JH, Lokhande CD, Korean J. Chem. Eng., 32(5), 974 (2015)
Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A., Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 24, 1537 (2011)
Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F, J. Power Sources, 153(2), 413 (2006)
Jeong H, Jeong SM, Korean Chem. Eng. Res., 53(2), 131 (2015)
Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632 (2012)
Nagarajan N, Humadi H, Zhitomirsky I, Electrochim. Acta, 51(15), 3039 (2006)
Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF, Adv. Mater., 23(6), 791 (2011)
Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Mater. Chem., 21, 9319 (2011)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Hu CC, Wang CW, Chang KH, Chen MG, Nanotechnology, 26(27), 274004 (2015)
Jayashree RS, Kamath PV, J. Mater. Chem., 9(4), 961 (1999)
Ramesh TN, Rajamathi M, Kamath PV, Solid State Sci., 5(5), 751 (2003)
Wang R, Yan X, Lang J, Zheng Z, Zhang P, J. Mater. Chem. A, 2, 12724 (2014)
Zhao CM, Wang X, Wang SM, Wang YY, Zhao YX, Zheng WT, Int. J. Hydrog. Energy, 37(16), 11846 (2012)
He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF, Electrochem. Commun., 12(4), 570 (2010)
Luo HM, Zhang FB, Zhao X, Zhang DY, Sun YX, Yang P, J. Mater. Sci. -Mater. Electron., 24(7), 2473 (2013)
Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860 (2011)
Gupta V, Kusahara T, Toyama H, Gupta S, Miura N, Electrochem. Commun., 9(9), 2315 (2007)
Chang JK, Wu CM, Sun IW, J. Mater. Chem., 20, 3729 (2010)
Peng C, Jin J, Chen GZ, Electrochim. Acta, 53(2), 525 (2007)
Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853 (2004)
Kong LB, Lang JW, Liu M, Luo YC, Kang L, J. Power Sources, 194(2), 1194 (2009)
Tao F, Shen Y, Liang Y, Li H, J. Solid State Electrochem., 11, 853 (2007)