Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 19, 2016
Accepted February 11, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
구미국가산업단지의 트리메틸아민 악취모델링
Odor Modeling of trimethyl amine in Gumi National Industrial Complex
1대구대학교 화학공학과, 38453 경북 경산시 진량읍 대구대로 201 2산업 및 환경폐가스연구소, 38453 경북 경산시 진량읍 대구대로 201
1Department of Chemical Engineering, Daegu University, 201, Daegudae-ro, Gyeongsan, Gyeongbuk, 38453, Korea 2Laboratory of industrial and environmental waste air, Daegu University, 201, Daegudae-ro, Gyeongsan, Gyeongbuk, 38453, Korea 3, Korea
khlim@daegu.ac.kr
Korean Chemical Engineering Research, April 2016, 54(2), 187-199(13), 10.9713/kcer.2016.54.2.187 Epub 5 April 2016
Download PDF
Abstract
구미공단 대규모합성섬유제조업체들의 총괄 점오염원 및 개별 점오염원에 의한 각각의 트리메틸아민 관련 기여도 평가예측을 위하여 CALPUFF 모델링을 수행하였다. 또한 개별 점오염원의 총괄 점오염원에 대한 트리메틸 관련 상대적 기여도를 산출하였다. T사 배출설비 개선 후 총괄 점오염원의 트리메틸아민 배출에 의한 본 연구 CALPUFF 모델링 결과로서 2011년 겨울(1월), 봄(4월)에는 주로 구미 3공단에서, 여름(7월), 가을(10월)에는 주로 구미 1공단에서 트리메틸아민 농도의 최대값이 도출되었다. 한편 T사 배출설비 개선 후에는 구미 1공단의 경우에 트리메틸아민 예측 최대값 범위가 매우 개선되었음이 확인되었다. 반면에 구미3공단의 경우는 T사 배출설비 개선 후에 오히려 트리메틸아민 예측 최대값의 상한치가 더욱 커졌으나 그 상한치를 제외하였을 때는 T사 배출설비 개선 전의 트리메틸아민 측정치의 상한치와 비슷하였다. 이와 같이 T사 배출설비 개선이 공단별 트리메틸아민 농도에 미치는 영향이 구미 1공단에서는 컸으나 구미 3공단에서는 미미한 수준이었다. 한편 본 연구 CALPUFF 모델링 결과로서 트리메틸아민 농도 예측치는 트리메틸아민 농도의 측정치 범주와 거의 일치하므로 본 연구의 총괄 점오염원에 의한 트리메틸아민 기여도 평가에 대한 유효성을 보여주었다.
In this study CALPUFF modeling was performed to predict a contribution of a separate single point pollutant source as well as of total point pollutant sources of major synthetic fiber manufacturers in Gumi national industrial complex to atmospheric trimethylamine concentration of the same area. In addition, a contribution of the separate single point pollution source to the atmospheric trimethylamine concentration of the same area was estimated relatively to the total point pollutant sources. As a result of the CALPUFF modeling, the maximum atmospheric concentration of trimethylamine in Gumi national industrial complex was appeared upon improving T company emission facility frequently in complex 3 in winter (January) and spring (April) while frequently in complex 1 in summer (July) and autumn (October). Besides, the predicted range of the maximum atmospheric concentration of trimethylamine in complex 1 was improved upon improving its emission facility. However, even though in complex 3 the upper bound of the predicted maximum atmospheric concentrations of trimethylamine was increased upon improving T company emission facility, the predicted value of their second upper bound below the upper bound was very similar to the upper bound of measured atmospheric trimethylamine concentrations in Gumi prior to improving its emission facility. Thus, the effect of improving T company emission facility was estimated huge in complex 1 while it was trivial in complex 3. These maximum concentrations of trimethylamine predicted to estimate the expected contribution of total point pollutant sources by CALPUFF modeling showed the similar values to those measured in the region of Gumi. Therefore, the expected contribution of total point pollutant sources to atmospheric trimethylamine concentration in the area of Gumi was validated.
References
Kim TO, Choi WG, “Monitoring of Odorous Elements in Kumi Industrial Complex,” Fall Conference on Odor Research and Engineering, October, Incheon(2010).
http://www.gbgec.or.kr/business/02.html.
Laupsa H, Denby B, Larrsen S, Schaug J, Atmos. Environ., 43, 4733 (2009)
Lee EJ, Akhtar MS, Lim KH, Korean Chem. Eng. Res., 54(1), 22 (2016)
Jeong SJ, Atmos. Environ., 5(1), 1 (2011)
Ranzato L, Barausse A, Mantovani A, Pittarello A, Benzo M, Palmeri L, Atmos. Environ., 61, 570 (2012)
Scire JS, Strimaitis DG, Yamartino RJ, A User’s guide for the CALPUFF dispersion model, version 5, Earth Tech, Inc., Concord, MA(2000).
Wang L, Parker DB, Parnell CB, Lacey EE, Shaw BW, Atmos. Environ., 40, 4663 (2006)
Kim JH, Kwak BK, Shin CB, Jeon WJ, Yi JH, Korean Chem. Eng. Res., 47(2), 248 (2009)
Kim JH, Kwak BK, Shin CB, Park HS, Choi K, Lee SM, Yi J, Korean J. Chem. Eng., 26(6), 1620 (2009)
Chemical Fiber Handbook, Korea Chemical Fibers Association (2009).
Turner DB, Workbook of Atmospheric Dispersion Estimates, U.S. EPA Office of Air Programs Publication No. AP-26, Research Triangle Park, NC(1970).
http://www.gbgec.or.kr/business/02.html.
Laupsa H, Denby B, Larrsen S, Schaug J, Atmos. Environ., 43, 4733 (2009)
Lee EJ, Akhtar MS, Lim KH, Korean Chem. Eng. Res., 54(1), 22 (2016)
Jeong SJ, Atmos. Environ., 5(1), 1 (2011)
Ranzato L, Barausse A, Mantovani A, Pittarello A, Benzo M, Palmeri L, Atmos. Environ., 61, 570 (2012)
Scire JS, Strimaitis DG, Yamartino RJ, A User’s guide for the CALPUFF dispersion model, version 5, Earth Tech, Inc., Concord, MA(2000).
Wang L, Parker DB, Parnell CB, Lacey EE, Shaw BW, Atmos. Environ., 40, 4663 (2006)
Kim JH, Kwak BK, Shin CB, Jeon WJ, Yi JH, Korean Chem. Eng. Res., 47(2), 248 (2009)
Kim JH, Kwak BK, Shin CB, Park HS, Choi K, Lee SM, Yi J, Korean J. Chem. Eng., 26(6), 1620 (2009)
Chemical Fiber Handbook, Korea Chemical Fibers Association (2009).
Turner DB, Workbook of Atmospheric Dispersion Estimates, U.S. EPA Office of Air Programs Publication No. AP-26, Research Triangle Park, NC(1970).