Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 17, 2015
Accepted November 3, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구
Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon
공주대학교 화학공학부, 31080 충남 천안시 서북구 천안대로 1223-24
Division of chemical Engineering,, Kongju National University,, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan, Chungnam, 31080, Korea
jjlee@kongju.ac.kr
Korean Chemical Engineering Research, April 2016, 54(2), 255-261(7), 10.9713/kcer.2016.54.2.255 Epub 5 April 2016
Download PDF
Abstract
활성탄을 사용한 Acid Yellow 14 염료의 흡착 실험은 흡착제의 양, pH, 초기농도, 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir, Freundlich 및 Temkin 등온식을 사용하여 해석하였는데, Freundlich 식이 가장 좋은 일치도를 나타냈다. 평가된 Freundlich 상수(1/n=0.129~0.212)와 Langmuir 분리계수(RL=0.202~0.243)로부터 활성탄에 의한 Acid Yellow 14의 흡착조작은 적절한 처리방법이 될 수 있음을 알았다. Temkin의 흡착열관련상수(B)는 5.101~9.164 J/mol로 평가되어, 흡착공정이 물리흡착임을 알았다. 흡착속도실험자료를 유사일차반응속도식과 유사이차반응속도식에 적용해 본 결과, 흡착동력학은 유사이차반응속도식에 잘 맞는 것으로 나타났다. Gibbs 자유에너지(-4.81~-10.33 kJ/mol)와 엔탈피(+78.59 kJ/mol)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타낸다.
Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor (RL=0.202~0.243), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudosecond-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.
References
Zhao X, Ma SQ, Lu GQ, Fuel, 12(6), 1051 (1998)
Yoshida H, Okamoto A, Kataoka T, Chem. Eng. Sci., 48(12), 2267 (1993)
Fernandes J, Kiwi J, Lizama C, Freer J, Baeza J, Mansilia H, J. Photochem. Photobiol. A-Chem., 151, 213 (2002)
Samiey B, Toosi A, Central Eur. J. Chem., 8, 906 (2010)
Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364 (2005)
Ashraf MA, Hussain M, Mahmood K, Wajid A, Alias MYY, Yusoff I, Desalin. Water Treat., 51(22-24), 4530 (2013)
Porselvi E, Krishnamoorthy P, J. Mater. Environ. Sci., 5(2), 408 (2014)
Chen XQ, Lam KF, Mak SF, Ching WK, Ng TN, Yeung KL, Chin. J. Chem. Eng., 20(3), 426 (2012)
Malik PK, Dyes Pigment., 56(3), 239 (2003)
Alkan M, Demirbas O, Dogan M, Fresen. Environ Bull., 13(11a), 1112 (2004)
Iqbal J, Wattoo FH, Wattoo MHS, Malik R, Tirmizi SA, Imran M, Ghangro AB, Arab. J. Chem., 4, 389 (2011)
Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C, Korean J. Chem. Eng., 31(6), 1021 (2014)
Ahn SJ, Cayetano RD, Kim TH, Kim JS, Korean Chem. Eng. Res., 53(1), 1 (2015)
Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
Sivakumar P, Palanisamy PN, Int. J. Chem. Tech. Res., 1(3), 502 (2009)
Lee JJ, Korean Chem. Eng. Res., 53(3), 309 (2015)
Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
Mittal A, J. Hazard. Mater., 133(1-3), 196 (2006)
Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
Yoshida H, Okamoto A, Kataoka T, Chem. Eng. Sci., 48(12), 2267 (1993)
Fernandes J, Kiwi J, Lizama C, Freer J, Baeza J, Mansilia H, J. Photochem. Photobiol. A-Chem., 151, 213 (2002)
Samiey B, Toosi A, Central Eur. J. Chem., 8, 906 (2010)
Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364 (2005)
Ashraf MA, Hussain M, Mahmood K, Wajid A, Alias MYY, Yusoff I, Desalin. Water Treat., 51(22-24), 4530 (2013)
Porselvi E, Krishnamoorthy P, J. Mater. Environ. Sci., 5(2), 408 (2014)
Chen XQ, Lam KF, Mak SF, Ching WK, Ng TN, Yeung KL, Chin. J. Chem. Eng., 20(3), 426 (2012)
Malik PK, Dyes Pigment., 56(3), 239 (2003)
Alkan M, Demirbas O, Dogan M, Fresen. Environ Bull., 13(11a), 1112 (2004)
Iqbal J, Wattoo FH, Wattoo MHS, Malik R, Tirmizi SA, Imran M, Ghangro AB, Arab. J. Chem., 4, 389 (2011)
Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C, Korean J. Chem. Eng., 31(6), 1021 (2014)
Ahn SJ, Cayetano RD, Kim TH, Kim JS, Korean Chem. Eng. Res., 53(1), 1 (2015)
Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
Sivakumar P, Palanisamy PN, Int. J. Chem. Tech. Res., 1(3), 502 (2009)
Lee JJ, Korean Chem. Eng. Res., 53(3), 309 (2015)
Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
Mittal A, J. Hazard. Mater., 133(1-3), 196 (2006)
Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)