ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 7, 2015
Accepted October 5, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells

충남대학교 에너지과학기술대학원, 34134 대전광역시 유성구 대학로 99 1충남대학교 화학공학과, 34134 대전광역시 유성구 대학로 99
Graduate School of Energy Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea 1Department of Chemical Engineering,, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
hchoi@cnu.ac.kr
Korean Chemical Engineering Research, April 2016, 54(2), 262-267(6), 10.9713/kcer.2016.54.2.262 Epub 5 April 2016
downloadDownload PDF

Abstract

본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지의 상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.
In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

References

O’Regan B, Gratzel M, Nature, 353, 737 (1991)
Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
Jiang KJ, Manseki K, Yu YH, Masaki N, Suzuki K, Song YL, Yanagida S, Adv. Funct. Mater., 19(15), 2481 (2009)
Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Seok SI, Nano Lett., 10(7), 2609 (2010)
Sastrawan R, Beier J, Belledin U, Hemming S, Hinsch A, Kern R, Vetter C, Petrat FM, Prodi-Schwab A, Lechner P, Hoffmann W, Sol. Energy Mater. Sol. Cells, 90(11), 1680 (2006)
Ahn SH, Kim HW, Lee SH, Chi WS, Choi JR, Shul YG, Kim JH, Korean J. Chem. Eng., 28(1), 138 (2011)
Kay A, Gratzel M, Sol. Energy Mater. Sol. Cells, 44(1), 99 (1996)
Olsen E, Hagen G, Lindquist SE, Sol. Energy Mater. Sol. Cells, 63(3), 267 (2000)
Lee SU, Choi WS, Hong B, Sol. Energy Mater. Sol. Cells, 94(4), 680 (2010)
Nam JG, Park YJ, Kim BS, Lee JS, Scr. Mater., 62(3), 148 (2010)
Kim KM, Kang KY, Choi MG, Lee YG, Korean Chem. Eng. Res., 49(6), 846 (2011)
Bonard J, Maier F, Stockli T, Chatelain A, Heer WA, Salvetat J, Forro L, Ultramicroscopy, 73(1), 7 (1998)
Trancik JE, Barton SC, Hone J, Nano Lett., 8(4), 982 (2008)
Lee WJ, Lee DY, Kim IS, Jeong SJ, Song JS, Trans. Electr Electron. Mater., 6(4), 140 (2005)
Cha SI, Koo BK, Seo SH, Lee DY, J. Mater. Chem., 20(4), 659 (2010)
Dao VD, Tran CQ, Ko SH, Choi HS, J. Mater. Chem. A, 1(14), 4436 (2013)
Dao VD, Nang LV, Kim ET, Lee JK, Choi HS, ChemSusChem., 6(8), 1316 (2013)
Dao VD, Choi HS, Chem. Commun., 49(79), 8910 (2013)
Dao VD, Choi Y, Yong K, Larina LL, Shevaleevskiy O, Choi HS, J. Power Sources, 274(15), 831 (2014)
Dao VD, Larina LL, Suh H, Hong K, Lee JK, Choi HS, Carbon, 77, 980 (2014)
Baba K, Kaneko T, Hatakeyama R, Motomiyac K, Tohji K, Chem. Commun., 46(2), 255 (2010)
Lordi V, Yao N, Wei J, Chem. Mater., 13(3), 733 (2001)
Dao VD, Ko SH, Choi HS, Lee JK, J. Mater. Chem., 22(28), 14023 (2012)
Fennell J, He DS, Tanyi AM, Logsdail AJ, Johnston RL, Li ZY, Horswell SL, J. Am. Chem. Soc., 135(17), 6554 (2013)
Chen CW, Serizawa T, Akashi M, Chem. Mater., 14(5), 2232 (2002)
Shen J, Hill JM, Ramachandra MW, Podkolzin SG, Dumesic JA, Catal. Lett., 60(1), 1 (1999)
Wolf A, Schuth F, Appl. Catal. A: Gen., 226(1), 1 (2002)
Yang CM, Kalwei M, Schuth F, Chao KJ, Appl. Catal. A: Gen., 254(2), 289 (2003)
Boujday S, Lehman J, Lambert JF, Che M, Catal. Lett., 88(1), 23 (2003)
Shelimov B, Lambert JF, Che M, Didillon B, J. Am. Chem. Soc., 121(3), 545 (1999)
Ranasinghe, A. D. (Ph.D. thesis), University of California, Santa Barbara, CA, (2007).
Brillson LJ, “Surface and Interface of Electronic Materials”, WILEY-VCH Verlag 413 GmbH & Co. KGaA, Weinheim (2010).
Xu CX, Hou JG, Pang XH, Li XJ, Zhu ML, Tang BY, Int. J. Hydrog. Energy, 37(14), 10489 (2012)
Toda T, Igarashi H, Watanabe M, J. Electroanal. Chem., 460(1), 258 (1999)
Yoon CH, Vittal R, Lee J, Chae WS, Kim KJ, Electrochim. Acta, 53(6), 2890 (2008)
Dao VD, Choi HS, Electrochim. Acta, 93, 287 (2013)
Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K, Sol. Energy Mater. Sol. Cells, 79(4), 459 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로