Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 19, 2016
Accepted July 4, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
PCBs 독성 예측을 위한 주요 분자표현자 선택 기법 및 계산독성학 기반 QSAR 모델 개발
Development of QSAR Model Based on the Key Molecular Descriptors Selection and Computational Toxicology for Prediction of Toxicity of PCBs
경희대학교 환경학 및 환경공학과 환경연구센터
Department of Environmental Science and Engineering, Center for Environmental Studies, College of Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi, 17104, Korea
Korean Chemical Engineering Research, October 2016, 54(5), 621-629(9), 10.9713/kcer.2016.54.5.621 Epub 6 October 2016
Download PDF
Abstract
EU의 REACH 제도 도입에 따라 각종 화학물질에 대한 독성 및 활성 정보 확보를 위해 화학물질의 분자구조 정보를 기반으로 화학물질의 독성 및 활성을 예측하는 정량적구조활성관계(QSAR)에 대한 연구가 최근 활발히 진행되고있다. QSAR 모델에 사용되는 분자표현자는 매우 다양하기 때문에 화학물질의 물성 및 활성을 잘 표현할 수 있는 주요한 분자표현자를 선택하는 과정은 QSAR 모델 개발에 있어 중요한 부분이다. 본 연구에서는 화학물질의 분자구조정보를 나타내는 주요 분자표현자의 통계적 선택 방법과 부분최소자승법(Partial least square: PLS) 기반의 새로운 QSAR 모델을 제안하였다. 제안된 QSAR 모델은 130종의 폴리염화바이페닐(Polychlorinated biphenyl: PCB)에 대한 분배계수(log P)와 14종의 PCBs에 대한 반수 치사 농도(Lethal concentration 50%: LC50) 예측에 사용되고, 제안된 QSAR 모델 예측 정확도는 기존의 OECD QSAR Toolbox에서 제공하는 QSAR 모델과 비교하였다. 관심 화학물질의 분자표현자와 활성정보 간의 높은 상관관계를 갖는 주요 분자표현자를 선별하기 위해서, 상관계수(r)와 variable importance on projections (VIP)기법을 적용하였으며, 화학물질의 독성 및 활성정보를 예측하기 위해 선별된 분자표현자와 활성정보를 이용해 부분최소자승법(PLS)를 사용하였다. 회귀계수(R2)와 prediction residual error sum of square(PRESS)을 이용한 성능평가결과, 제안된 QSAR 모델은 OECD QSAR Toolbox의 QSAR 모델보다 PCBs의 log P와 LC50에 대하여 각각 26%, 91% 향상된 예측력을 나타내었다. 본 연구에서 제안된 계산독성학 기반의 QSAR 모델은 화학물질의 독성 및 활성정보에 대한 예측력을 향상시킬 수 있고 이러한 방법은 유독 화학물질의 인체 및 환경 위해성 평가에 기여할 것으로 판단된다.
Recently, the researches on quantitative structure activity relationship (QSAR) for describing toxicities or activities of chemicals based on chemical structural characteristics have been widely carried out in order to estimate the toxicity of chemicals in multiuse facilities. Because the toxicity of chemicals are explained by various kinds of molecular descriptors, an important step for QSAR model development is how to select significant molecular descriptors. This research proposes a statistical selection of significant molecular descriptors and a new QSAR model based on partial least square (PLS). The proposed QSAR model is applied to estimate the logarithm of partition coefficients (log P) of 130 polychlorinated biphenyls (PCBs) and lethal concentration (LC50) of 14 PCBs, where the prediction accuracies of the proposed QSAR model are compared to a conventional QSAR model provided by OECD QSAR toolbox. For the selection of significant molecular descriptors that have high correlation with molecular descriptors and activity information of the chemicals of interest, correlation coefficient (r) and variable importance of projection (VIP) are applied and then PLS model of the selected molecular descriptors and activity information is used to predict toxicities and activity information of chemicals. In the prediction results of coefficient of regression (R2) and prediction residual error sum of square (PRESS), the proposed QSAR model showed improved prediction performances of log P and LC50 by 26% and 91% than the conventional QSAR model, respectively. The proposed QSAR method based on computational toxicology can improve the prediction performance of the toxicities and the activity information of chemicals, which can contribute to the health and environmental risk assessment of toxic chemicals.
Keywords
References
Ahlers J, Stock F, Werschkun B, Environ. Sci. Pollut. Res., 15(7), 565 (2008)
Kananpanah S, Dizadji N, Abolghasemi H, Salamatinia B, Korean J. Chem. Eng., 26(5), 1208 (2009)
TGD E, Technical Guidance Document (TGD) in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances, Part i to IV, Office for official publications of the European Communities (1996).
Devillers J, Balaban AT (Ed.), Topological indices and related descriptors in QSAR and QSPAR. CRC Press(2000).
Song IS, Cha JY, Lee SK, Anal. Sci. Technol., 24(6), 544 (2011)
Ammi Y, Khaouane L, Hanini S, Korean J. Chem. Eng., 32(11), 2300 (2015)
Kim J, Jung DH, Rhee H, Choi SH, Sung MJ, Choi WS, Korean J. Chem. Eng., 25(4), 865 (2008)
Coccini T, Giannoni L, Karcher W, Manzo L, Roi R, Quantitative structure/Activity relationships (QSAR) in Toxicology. Joint Research Centre, Pavia, Italy (1991).
Todeschini R, Consonni, V. Handbook of molecular descriptors, Vol. 11., John Wiley & Sons (2008).
Shi H, “IAQ monitoring of sub-PCA and health risk assessment of nonlinear QSAR for indoor air pollutants,” Master Dissertation, Kyung Hee University, Seoul, Korea (2015).
Ock HS, Korean J. Pestic. Sci., 15(1), 68 (2011)
Han IS, Shin HK, Korean Chem. Eng. Res., 53(2), 236 (2015)
Lee CJ, Ko JW, Lee G, Korean Chem. Eng. Res., 48(6), 717 (2010)
Montgomery DC, Runger GC, Hubele N. F. Engineering statistics. John Wiley & Sons (2009).
Pao SY, Lin WL, Hwang MJ, BMC genomics, 7(1), 1 (2006)
Mehmood T, Liland KH, Snipen L, Sæbø S, Chemometrics Intell. Lab. Syst., 118, 62 (2012)
Chong IG, Jun CH, Chemometrics Intell. Lab. Syst., 78(1), 103 (2005)
Talete srl, Dragon Version 6.0, http://www.talete.mi.it/.
Gholivand K, Ebrahimi Valmoozi AA, Mahzouni HR, Ghadimi S, Rahimi R, J. Agric. Food Chem., 61(28), 6776 (2013)
OECD QSAR toolbox Version 3.2, http://www.qsartoolbox.org.
Robertson LW, Hansen LG (Ed)., PCBs: recent advances in environmental toxicology and health effects. University Press of Kentucky(2015).
Gramatica P, Navas N, Todeschini R, Chemometrics Intell. Lab. Syst., 40(1), 53 (1998)
Randic M, New J. Chem., 19(7), 781 (1995)
Randic M, J. Chem. Inform. Comput. Sci., 35(3), 373 (1995)
Randic M, Razinger M, J. Chem. Inform. Comput. Sci., 35(3), 594 (1995)
Consonni V, Todeschini R, Pavan M, J. Chem. Inform. Comput. Sci., 42(3), 682 (2002)
Consonni V, Todeschini R, Pavan M, Gramatica P, J. Chem. Inform. Comput. Sci., 42(3), 693 (2002)
Carhart RE, Smith DH, Venkataraghavan R, J. Chem. Inform. Comput. Sci., 25(2), 64 (1985)
Broto P, Moreau G, Vandycke C, Eur. J. Med. Chem., 19(1), 66 (1984)
Buckley F, Harary F, Distance in graphs. Addison-Wesley Longman(1990).
Pearlman RS, Smith KM, “Novel Software Tools for Chemical Diversity,” 3D QSAR in drug design, 339-353. Springer Netherlands(2002).
Hemmer MC, Steinhauer V, Gasteiger J, Vib. Spectrosc., 19(1), 151 (1999)
Kananpanah S, Dizadji N, Abolghasemi H, Salamatinia B, Korean J. Chem. Eng., 26(5), 1208 (2009)
TGD E, Technical Guidance Document (TGD) in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances, Part i to IV, Office for official publications of the European Communities (1996).
Devillers J, Balaban AT (Ed.), Topological indices and related descriptors in QSAR and QSPAR. CRC Press(2000).
Song IS, Cha JY, Lee SK, Anal. Sci. Technol., 24(6), 544 (2011)
Ammi Y, Khaouane L, Hanini S, Korean J. Chem. Eng., 32(11), 2300 (2015)
Kim J, Jung DH, Rhee H, Choi SH, Sung MJ, Choi WS, Korean J. Chem. Eng., 25(4), 865 (2008)
Coccini T, Giannoni L, Karcher W, Manzo L, Roi R, Quantitative structure/Activity relationships (QSAR) in Toxicology. Joint Research Centre, Pavia, Italy (1991).
Todeschini R, Consonni, V. Handbook of molecular descriptors, Vol. 11., John Wiley & Sons (2008).
Shi H, “IAQ monitoring of sub-PCA and health risk assessment of nonlinear QSAR for indoor air pollutants,” Master Dissertation, Kyung Hee University, Seoul, Korea (2015).
Ock HS, Korean J. Pestic. Sci., 15(1), 68 (2011)
Han IS, Shin HK, Korean Chem. Eng. Res., 53(2), 236 (2015)
Lee CJ, Ko JW, Lee G, Korean Chem. Eng. Res., 48(6), 717 (2010)
Montgomery DC, Runger GC, Hubele N. F. Engineering statistics. John Wiley & Sons (2009).
Pao SY, Lin WL, Hwang MJ, BMC genomics, 7(1), 1 (2006)
Mehmood T, Liland KH, Snipen L, Sæbø S, Chemometrics Intell. Lab. Syst., 118, 62 (2012)
Chong IG, Jun CH, Chemometrics Intell. Lab. Syst., 78(1), 103 (2005)
Talete srl, Dragon Version 6.0, http://www.talete.mi.it/.
Gholivand K, Ebrahimi Valmoozi AA, Mahzouni HR, Ghadimi S, Rahimi R, J. Agric. Food Chem., 61(28), 6776 (2013)
OECD QSAR toolbox Version 3.2, http://www.qsartoolbox.org.
Robertson LW, Hansen LG (Ed)., PCBs: recent advances in environmental toxicology and health effects. University Press of Kentucky(2015).
Gramatica P, Navas N, Todeschini R, Chemometrics Intell. Lab. Syst., 40(1), 53 (1998)
Randic M, New J. Chem., 19(7), 781 (1995)
Randic M, J. Chem. Inform. Comput. Sci., 35(3), 373 (1995)
Randic M, Razinger M, J. Chem. Inform. Comput. Sci., 35(3), 594 (1995)
Consonni V, Todeschini R, Pavan M, J. Chem. Inform. Comput. Sci., 42(3), 682 (2002)
Consonni V, Todeschini R, Pavan M, Gramatica P, J. Chem. Inform. Comput. Sci., 42(3), 693 (2002)
Carhart RE, Smith DH, Venkataraghavan R, J. Chem. Inform. Comput. Sci., 25(2), 64 (1985)
Broto P, Moreau G, Vandycke C, Eur. J. Med. Chem., 19(1), 66 (1984)
Buckley F, Harary F, Distance in graphs. Addison-Wesley Longman(1990).
Pearlman RS, Smith KM, “Novel Software Tools for Chemical Diversity,” 3D QSAR in drug design, 339-353. Springer Netherlands(2002).
Hemmer MC, Steinhauer V, Gasteiger J, Vib. Spectrosc., 19(1), 151 (1999)