Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 12, 2016
Accepted June 1, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Single cell-strain부터 유래된 무세포 효소 시스템을 이용한 톨루엔 및 아세트산 분해
Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain
경북대학교 화학공학과, 41566 대구광역시 북구 대학로 80
Department of Chemical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Korea
parkjk@knu.ac.kr
Korean Chemical Engineering Research, October 2016, 54(5), 665-670(6), 10.9713/kcer.2016.54.5.665 Epub 6 October 2016
Download PDF
Abstract
본 연구에서는 톨루엔 분해 균주인 Pseudomonas putida와 아세트산 분해 균주인 Cupriavidus necator에 무세포 효소 시스템(cell-free enzyme system)을 적용하여 톨루엔과 아세트산에 대한 분해 가능성을 확인하는 실험을 수행하였다. P. putida는 톨루엔 존재 하에서만 toluene dioxygenase를 생성하여 톨루엔을 cis-toluene dihydrodiol로 분해하며, C. necator는 acetyl coenzyme A synthetase-1을 생성하여 아세트산을 acetyl CoA로 전환시켜 생존에 필요한 ATP나 생분해성(biodegradable) 고분자인 Polyhydroxyalkanoate (PHA)를 합성한다. P. putida의 톨루엔 분해 효소인 toluene dioxygenase는 유도효소이기 때문에 toluene dioxygenase 생성 전과 후로 나누어 실험을 진행하였다. P. putida의 톨루엔 분해능력 확인을 위한 gas chromatography (GC) 분석 결과, 대조군과 toluene dioxygenase 생성 전인 실험군 1에서는 검출된 톨루엔의 양이 거의 유사하였으나, toluene dioxygenase 생성 후인 실험군 2에서는 검출된 톨루엔의 양이 대조군 및 실험군 1에 비해 감소하였다. 또한 C. necator의 아세트산 분해능력 확인을 위한 gas chromatography-mass spectrometer (GC-MS) 분석 결과, 무세포 효소 시스템을 적용한 실험군에서는 아세트산에 대한 피크가 검출되지 않았다. 따라서 P. putida와 C. necator는 무세포 효소 시스템 적용 후에도 톨루엔 및 아세트산 분해 능력이 유지되었으나, P. putida는 무세포 효소 시스템을 적용하기 전에 유도 효소를 생성하는 과정이 필요하다.
This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.
References
Ahn JW, Kim YH, Kim KH, Song HN, Anal. Sci. Technol., 25(2), 91 (2012)
Hupert-Kocurek K, Guzik U, Wojcieszynska D, Acta. Biochim. Pol., 59(3), 345 (2012)
Fan LH, Zhang ZJ, Yu XY, Xue YX, Wang MM, Tan TW, Process Biochem., 48(3), 430 (2013)
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park J, Appl. Microbiol. Biotechnol., 98(23), 9561 (2014)
Welch P, Scopes RK, J. Biotechnol., 2(5), 257 (1985)
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biotechnol. Bioprocess Eng., 20(3), 561 (2015)
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biochem. Eng. J., 91, 110 (2014)
Yeh WK, Gibson DT, Liu TN, Biochem. Biophys. Res. Commun., 78(1), 401 (1977)
Chakraborty P, Gibbons W, Muthukumarappan K, J. Appl. Microbiol., 106(6), 1996 (2009)
Khan S, Ul-Islam M, Khattak WA, Ullah MW, Yu B, Park JK, Korean J. Chem. Eng., 32(4), 694 (2015)
Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK, Carbohydr. Polym., 132, 286 (2015)
Khattak WA, Ul-Islam M, Ullah MW, Yu BW, Khan S, Park JK, Process Biochem., 49(3), 357 (2014)
Finette BA, Subramanian V, Gibson DT, J. Bacteriol., 160(3), 1003 (1984)
Zylstra GJ, McCombie WR, Gibson DT, Finette BA, Appl. Environ. Microbiol., 54(6), 1498 (1988)
Subramanian V, Liu TN, Yeh WK, Gibson DT, Biochem. Biophys. Res. Commun., 91(3), 1131 (1979)
Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996)
Wang J, Yue ZB, Sheng GP, Yu HQ, Biochem. Eng. J., 49(3), 422 (2010)
Gibson DT, Koch JR, Kallio RE, Biochemistry, 7(7), 2653 (1968)
Rogers JE, Gibson DT, J. Bacteriol., 130(3), 1117 (1977)
Ziffer H, Jerina DM, Gibson DT, Kobal VM, J. Am. Chem. Soc., 95(12), 4048 (1973)
Lee JS, “Biological Treatment of Wastewater in Automobile Paint Shop,” MS. Thesis, Kyungpook National University, Daegu, Korea (2015).
Kim JY, Yoon SM, Park K, Yoon SK, Kil IS, Park HJ, Rhee YW, Korean Chem. Eng. Res., 48(6), 752 (2010)
Kim SS, Park DW, Kim SY, Kim JH, Haam SJ, Kim E, Kim WS, Korean Chem. Eng. Res., 39(3), 340 (2001)
Hupert-Kocurek K, Guzik U, Wojcieszynska D, Acta. Biochim. Pol., 59(3), 345 (2012)
Fan LH, Zhang ZJ, Yu XY, Xue YX, Wang MM, Tan TW, Process Biochem., 48(3), 430 (2013)
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park J, Appl. Microbiol. Biotechnol., 98(23), 9561 (2014)
Welch P, Scopes RK, J. Biotechnol., 2(5), 257 (1985)
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biotechnol. Bioprocess Eng., 20(3), 561 (2015)
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biochem. Eng. J., 91, 110 (2014)
Yeh WK, Gibson DT, Liu TN, Biochem. Biophys. Res. Commun., 78(1), 401 (1977)
Chakraborty P, Gibbons W, Muthukumarappan K, J. Appl. Microbiol., 106(6), 1996 (2009)
Khan S, Ul-Islam M, Khattak WA, Ullah MW, Yu B, Park JK, Korean J. Chem. Eng., 32(4), 694 (2015)
Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK, Carbohydr. Polym., 132, 286 (2015)
Khattak WA, Ul-Islam M, Ullah MW, Yu BW, Khan S, Park JK, Process Biochem., 49(3), 357 (2014)
Finette BA, Subramanian V, Gibson DT, J. Bacteriol., 160(3), 1003 (1984)
Zylstra GJ, McCombie WR, Gibson DT, Finette BA, Appl. Environ. Microbiol., 54(6), 1498 (1988)
Subramanian V, Liu TN, Yeh WK, Gibson DT, Biochem. Biophys. Res. Commun., 91(3), 1131 (1979)
Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996)
Wang J, Yue ZB, Sheng GP, Yu HQ, Biochem. Eng. J., 49(3), 422 (2010)
Gibson DT, Koch JR, Kallio RE, Biochemistry, 7(7), 2653 (1968)
Rogers JE, Gibson DT, J. Bacteriol., 130(3), 1117 (1977)
Ziffer H, Jerina DM, Gibson DT, Kobal VM, J. Am. Chem. Soc., 95(12), 4048 (1973)
Lee JS, “Biological Treatment of Wastewater in Automobile Paint Shop,” MS. Thesis, Kyungpook National University, Daegu, Korea (2015).
Kim JY, Yoon SM, Park K, Yoon SK, Kil IS, Park HJ, Rhee YW, Korean Chem. Eng. Res., 48(6), 752 (2010)
Kim SS, Park DW, Kim SY, Kim JH, Haam SJ, Kim E, Kim WS, Korean Chem. Eng. Res., 39(3), 340 (2001)