ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 3, 2015
Accepted August 17, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

부틸 아세테이트 생산을 위한 외부 공비제 첨가 반응증류: 파일럿 규모 실험을 통한 연구

Entrainer Enhanced Reactive Distillation for Production of Butyl Acetate: Experimental Investigation in Pilot-Scale

충남대학교 화학공학과, 34134 대전광역시 유성구 대학로 99
Department of Chemical Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-Gu, Deajeon, 34134, Korea
mwhan@cnu.ac.kr
Korean Chemical Engineering Research, October 2016, 54(5), 698-705(8), 10.9713/kcer.2016.54.5.698 Epub 6 October 2016
downloadDownload PDF

Abstract

부틸 아세테이트는 반응증류탑에서 초산과 부탄올의 에스테르 교환반응에 의해 제조된다. 기존의 반응증류 공정은 생성물인 부틸 아세테이트가 내부 공비첨가제로 사용되는데, 이 경우 부틸 아세테이트가 물과 함께 탑상으로 제거된 후 상 분리를 거쳐 반응증류탑으로 환류된다. 이는 생성물인 부틸 아세테이트가 반응영역에 많이 분포하게 하여 반응의 평형 전환율이 낮아지고 이에 따라 생성물의 수율이 저하되는 단점이 있다. 이러한 문제를 외부 공비첨가제를 사용하여 해결하였다. 외부 공비첨가제는 물과 새로운 공비를 형성하여 기존 공정에 비해 탑의 반응영역에서 부틸 아세테이트의 농도를 낮게한다. 본 연구에서는 싸이클로헥산을 외부 공비첨가제로 사용하였을 때와 내부 공비첨가제를 사용하였을 때 부틸 아세테이트의 수율과 생성 속도를 실험과 모사를 통하여 비교하였다. 이를 위하여 파일럿 규모의 반응증류탑으로 실험을 진행하였으며, 실험 및 모사 결과를 통하여 외부 공비첨가제를 사용한 공정이 내부 공비첨가제를 사용한 경우보다 같은 에너지에서 보다 높은 부틸 아세테이트 수율을 나타냄을 보였다.
Butyl acetate is produced from acetic acid and butanol via an esterification reaction in reactive distillation (RD). The product, butyl acetate, has been used as an internal entrainer until now. In this case, butyl acetate and water are removed at the top of column and separated into two different phases (organic and aqueous phases) after condensation, and butyl acetate rich organic phase is refluxed into the RD. This method makes butyl acetate remain high at the reactive zone, leading to lower equilibrium conversion and product yield. We introduced an extraneous entrainer to solve the problem. The extraneous entrainer forms a new azeotrope with water. The proposed process provides lower concentration of butyl acetate in the reactive zone than conventional RD processes using an internal entrainer. We compared the yield and production rate of butyl acetate between the proposed and conventional processes through pilot-scale experiments. Experimental and simulation results showed that the proposed process was more efficient than conventional process using internal entrainer.

References

Janowsky R, Groeble M, Knippenberg U, “Nonlinear Dynamics in Reactive Distillations Phenomena and Their Technical Use,” Bundesministerium fur Bildung und Forschung (BMBF) Project, 1997. (Funded by BMBF FKZ 03 D 0014 B0.)
Hanika J, Kolena J, Smejkal Q, Chem. Eng. Sci., 54(21), 5205 (1999)
Venimadhavan G, Malone MF, Doherty MF, Ind. Eng. Chem. Res., 38(3), 714 (1999)
Yang ZC, Cui XB, Gao J, Chem. Eng. Sci., 53(11), 2081 (1998)
Bessling B, Welker R, Knab JW, Lohe B, Disteldorf W, “Continuous Preparation of Esters and Apparatus Therefore,” Ger. Offen., 6, Chem. Abstr. 2003, 130, 11832v(1999).
Steinigeweg S, Gmehling J, Ind. Eng. Chem. Res., 41, 5483 (2003)
Gangadwala J, Kienle A, Stein E, Mahajani S, “Production of Butyl Acetate by Catalytic Distillations Reaction Kinetics and Process Design Studies,” In ISMR3-CCRE18: Joint Research Symposium of the 3rd International Symposium on Multifunctional Reactors and the 18th Colloquia on Chemical Reaction Engineering, 2003., pp 191-194. M. Tech. Dissertation, Indian Institute of Technology: Bombay, India(2002).
Gangadwala J, Mankar S, Mahajani S, Kienle A, Stein E, Ind. Eng. Chem. Res., 42(10), 2146 (2003)
Gangadwala J, Kienle A, Stein E, Mahajani S, Ind. Eng. Chem. Res., 43(1), 136 (2004)
Cho M, Jo S, Kim G, Han M, Ind. Eng. Chem. Res., 53(19), 8095 (2014)
Dimian AC, Omota F, Bliek A, Chem. Eng. Process., 43, 411 (2004)
Wang SJ, Wong DSH, Ind. Eng. Chem. Res., 45(26), 9042 (2006)
Suman T, Srinivas S, Mahajani SM, Ind. Eng. Chem. Res., 48(21), 9461 (2009)
Hasabnis A, Mahajani S, Ind. Eng. Chem. Res., 49(19), 9058 (2010)
de Jong MC, Zondervan E, Dimian AC, de Haan AB, Chem. Eng. Res. Des., 88(1A), 34 (2010)
Hu S, Zhang BJ, Hou XQ, Li DL, Chen QL, Chem. Eng. Process., 50(11-12), 1252 (2011)
Zhang BJ, Yang WS, Hu S, Liang YZ, Chen QL, Chem. Eng. Process., 70, 117 (2013)
Wang SJ, Huang HP, Chem. Eng. Process., 50(7), 709 (2011)
Dortmund Data Bank, DDBST GmbH: Oldenburg, Germany, 2002(www.ddbst.de).
Singh A, Hiwale R, Mahajani SM, Gudi RD, Gangadwala J, Kienle A, Ind. Eng. Chem. Res., 44(9), 3042 (2005)
Gmehling J, OnkenAll U, DECHEMA Chemistry Data Series, Vapor-Liquid Equilibrium Data Collection : (a) Vol.1, Part 1b, p 254; (b) Vol. 1, Part 1, p 106; (c) Vol. 1, Part 1b, p 338; (d) Vol. 1, Part 2d, p 157; (e) Vol. 1, Part 2b, p 197; (f) Vol. 1, Part 5, p 147. Components: (1) water; (2) butanol; (3) acetic acid; (4) butyl acetate.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로