Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 4, 2016
Accepted August 30, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능
Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material
충북대학교 화학공학과, 28644 충북 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdaero, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, December 2016, 54(6), 746-752(7), 10.9713/kcer.2016.54.6.746 Epub 5 December 2016
Download PDF
Abstract
본 연구에서는 열처리된 석유계 잔사유(pyrolysis fuel oil)부터 얻어진 탄소 전구체(피치)를 탄화시켜 소프트 카본을 제조하였다. 세 종류의 탄소 전구체는 3903(390 °C, 3 h), 4001(400 °C, 1 h), 4002(400 °C, 2 h) 열 반응에 의해 준비되었다. 제조된 소프트 카본 음극소재의 입도를 25~35 μm로 균일하게 한 후 붕산 첨가량을 달리하여 열처리를 통해 붕산 처리된 소프트 카본을 얻었다. 붕산처리를 통해 제조된 소프트 카본의 물리적 특성을 확인하기 위하여 XRD, FESEM, XPS 분석을 실시하였다. 또한 LiPF6 (EC : DMC=1:1 vol%+VC 3wt%) 전해질을 사용하여 충·방전, 율속, 순환전압 전류 시험, 임피던스 등과 같은 전기화학적 테스트를 수행하여 붕산 처리된 소프트 카본 음극 소재의 성능을 조사하였다. 25~35 μm의 입도를 가지는 3903 소프트 카본(H3BO3/Pitch=3:100 중량비)을 이용한 전지의 용량 및 초기 효율은 330 mAh/g, 82%로 다른 합성물보다 우수한 결과를 보였다. 또한 2C/0.1C 속도특성은 90%임을 보였다.
In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at 390 °C for 3 h), 4001 (at 400 °C for 1 h) and 4002 (at 400 °C for 2 h). After the prepared soft carbon was ground to a particle size of 25~35 °C, the soft carbon was synthesised by the chemical treatment with boric acid (H3BO3). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of 25~35 °C with 3903 soft carbon (H3BO3/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.
References
Jeon BJ, Kang SW, Lee JK, Korean J. Chem. Eng., 23(5), 854 (2006)
Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16 (2016)
Ma CL, Zhao Y, Li J, Song Y, Shi JL, Guo QG, Liu L, Electrochim. Acta, 112, 394 (2013)
Yang YS, Wang CY, Chen MM, Shi ZQ, Zheng JM, J. Solid State Chem., 183(9), 2116 (2010)
Jafari SM, Khosravi M, Mollazadeh M, Electrochim. Acta, 203, 9 (2016)
Zhang LJ, Xia GL, Guo ZP, Sun DL, Li XG, Yu XB, J. Power Sources, 324, 294 (2016)
Park MS, Lee J, Lee JW, Kim KJ, Jo YN, Woo SG, Kim YJ, Carbon, 62, 278 (2013)
Putri LK, Ong WJ, Chang WS, Chai SP, Appl. Surf. Sci., 358, 2 (2015)
Jeong JH, Jung DW, Shin EW, Oh ES, J. Alloy. Compd., 604, 226 (2014)
Rodriguez E, Camean I, Garcia R, Garcia AB, Electrochim. Acta, 56(14), 5090 (2011)
Kim J, Lee SH, Lee YS, Appl. Chem. Eng., 24(4), 402 (2013)
Kim MC, Eom SY, Ryu SK, Edie DD, Korean Chem. Eng. Res., 43(6), 745 (2005)
Wang H, Ma C, Yang X, Han T, Tao Z, Song Y, Liu Z, Guo Q, Liu L, Solid State Sci., 41, 36 (2015)
Li HL, Tay RY, Tsang SH, Liu WW, Teo EHT, Electrochim. Acta, 166, 197 (2015)
Wu YP, Rahm E, Holze R, Electrochim. Acta, 47(21), 3491 (2002)
Wang HY, Ikeda T, Fukuda K, Yoshio M, J. Power Sources, 83(1-2), 141 (1999)
Aurbach D, Markovsky B, Weissman I, Levia E, Ein-Eli Y, Electrochim. Acta, 45(1), 67 (1999)
Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16 (2016)
Ma CL, Zhao Y, Li J, Song Y, Shi JL, Guo QG, Liu L, Electrochim. Acta, 112, 394 (2013)
Yang YS, Wang CY, Chen MM, Shi ZQ, Zheng JM, J. Solid State Chem., 183(9), 2116 (2010)
Jafari SM, Khosravi M, Mollazadeh M, Electrochim. Acta, 203, 9 (2016)
Zhang LJ, Xia GL, Guo ZP, Sun DL, Li XG, Yu XB, J. Power Sources, 324, 294 (2016)
Park MS, Lee J, Lee JW, Kim KJ, Jo YN, Woo SG, Kim YJ, Carbon, 62, 278 (2013)
Putri LK, Ong WJ, Chang WS, Chai SP, Appl. Surf. Sci., 358, 2 (2015)
Jeong JH, Jung DW, Shin EW, Oh ES, J. Alloy. Compd., 604, 226 (2014)
Rodriguez E, Camean I, Garcia R, Garcia AB, Electrochim. Acta, 56(14), 5090 (2011)
Kim J, Lee SH, Lee YS, Appl. Chem. Eng., 24(4), 402 (2013)
Kim MC, Eom SY, Ryu SK, Edie DD, Korean Chem. Eng. Res., 43(6), 745 (2005)
Wang H, Ma C, Yang X, Han T, Tao Z, Song Y, Liu Z, Guo Q, Liu L, Solid State Sci., 41, 36 (2015)
Li HL, Tay RY, Tsang SH, Liu WW, Teo EHT, Electrochim. Acta, 166, 197 (2015)
Wu YP, Rahm E, Holze R, Electrochim. Acta, 47(21), 3491 (2002)
Wang HY, Ikeda T, Fukuda K, Yoshio M, J. Power Sources, 83(1-2), 141 (1999)
Aurbach D, Markovsky B, Weissman I, Levia E, Ein-Eli Y, Electrochim. Acta, 45(1), 67 (1999)