ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 26, 2016
Accepted August 17, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced Production of Cellulase-Free Thermoactive Xylanase Using Corncob by a Black Yeast, Aureobasidium pullulans CBS 135684

Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand 1Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
phunsa@chula.ac.th
Korean Chemical Engineering Research, December 2016, 54(6), 822-829(8), 10.9713/kcer.2016.54.6.822 Epub 6 December 2016
downloadDownload PDF

Abstract

Our aim was to optimize the production of cellulase-free thermoactive xylanase by Aureobasidium pullulans CBS 135684 with statistical methodology based on experimental designs. Among eleven variables, the nutrient sources that had significant effect on xylanase production were corncob, (NH4)2SO4, xylose, KH2PO4 and tween 80, identified by the initial screening method of Plackett-Burman. The optimum concentrations of these five components were subsequently investigated using response surface methodology. The optimal concentrations (g·l-1) for maximum production of xylanase were corncob, 39.0; (NH4)2SO4, 3.0; xylose, 1.8; KH2PO4 1.4; and tween 80, 1.4, respectively. An improved xylanase yield of 8.74 ± 0.84 U·ml-1 was obtained with optimized medium which is 2.1-fold higher production than previously obtained results (4.10 ± 0.10 U·ml-1) after 48 h of cultivation. In addition, the xylanase production under optimal condition reached 10.09 ± 0.27 U·ml-1 after 72 h of cultivation.

References

Beg QK, Kapoor M, Mahajan L, Hoondal GS, Appl. Microbiol. Biotechnol., 56(3-4), 326 (2001)
Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M, Adv. Biochem. Eng. Biotechnol., 108, 121 (2007)
Viikari L, Poutanen K, Tenkanen M, Tolan JS, “Hemicellulases,” Encyclopedia of Bioprocess Technology. Wiley, New York, (2002).
Woldesenbet F, Gupta N, Sharma P, Arch. Appl. Sci. Res., 4, 524 (2012)
Bankeeree W, Lotrakul P, Prasongsuk S, Chaiareekij S, Eveleigh DE, Kim SW, Punnapayak H, Springerplus, 3(1), 37 (2014)
Gangwar AK, Prakash NT, Prakash R, Bioresources, 9(2), 3733 (2014)
Benedetti ACEP, Costa ED, Aragon CC, Santos AF, Goulart AJ, Attili-Angelis D, Monti R, Rev. Cienc. Farm. Basica Apl., 34(1), 25 (2013)
Silva CJSM, Roberto IC, Process Biochem., 36(11), 1119 (2001)
Rao KJ, Kim CH, Rhee SK, Process Biochem., 35(7), 639 (2000)
Plackett RL, Burman JP, Biometrika, 33(4), 305 (1946)
Li Y, Liu ZQ, Cui FJ, Xu YY, Zhao H, J. Food Sci., 72(5), 320 (2007)
Cui F, Liu Z, Li Y, Ping L, Ping L, Zhang Z, Lin L, Dong Y, Huang D, Biotechnol. Bioprocess Eng., 15(2), 299 (2010)
Atlas RM, “Handbook of Microbiological Media,” L. C. Boca Raton, Florida (1993).
Leathers TD, J. Ind. Microbiol. Biotechnol., 4(5), 341 (1989)
Miller GL, Anal. Chem., 31(3), 426 (1959)
Box GE, Behnken DW, Technometrics, 2(4), 455 (1960)
Aro N, Ilmen M, Saloheimo A, Penttila M, Appl. Environ. Microbiol., 69(1), 56 (2003)
Margolles-Clark E, Ihnen M, Penttila M, Biotechnol. J., 57(1), 167 (1997)
Kulkarni N, Shendye A, Rao M, Fems Microbiol. Rev., 23(4), 411 (1999)
Li Y, Lin J, Meng D, Lu J, Gu G, Mao Z, Food Technol. Biotech., 44(4), 473 (2006)
Dobberstein J, Emeis CC, Appl. Microbiol. Biotechnol., 32(3), 262 (1989)
Dobberstein J, Emeis CC, Appl. Microbiol. Biotechnol., 32(3), 262 (1989)
Karni M, Deopurkar RL, Rale VB, World J. Microb. Biot., 9(4), 476 (1993)
Reese ET, Maguire A, J. Appl. Microbiol., 17(2), 242 (1969)
Shi JG, Zeng GM, Yuan XZ, Dai F, Liu J, Wu XH, World J. Microb. Biot., 22(11), 1121 (2006)
Ding CH, Jiang ZQ, Li XT, Li LT, Kusakabe I, World J. Microb. Biot., 20(1), 7 (2004)
Shah AR, Madamwar D, Process Biochem., 40(5), 1763 (2005)
Maalej I, Belhaj I, Masmoudi NF, Belghith H, Appl. Biochem. Biotechnol., 158(1), 200 (2009)
Nasr S, Soudi MR, Salmanian AH, Ghadam P, Iran J. Basic. Med. Sci., 16(12), 1245 (2013)
Chen Y, Guo J, Li F, Liu M, Zhang X, Guo X, Xiao D, Biotechnol. Bioprocess Eng., 19(2), 282 (2014)
Michelin M, Maria de Lourdes TM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA, Bioprocess. Biosyst. Eng., 35(7), 1185 (2012)
Jin N, Ma S, Liu Y, Yi X, He R, Xu H, Qiao DR, Cao Y, Afr. J. Microbiol. Res., 6(10), 2387 (2012)
Shah AR, Madamwar D, Process Biochem., 40(5), 1763 (2005)
Pal A, Khanum F, Food Technol. Biotech., 49(2), 228 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로