Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 21, 2016
Accepted August 30, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구
Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction
한국원자력연구원 SFR계통설계부, 34057 대전광역시 유성구 대덕대로 989번길 111
SFR System Design Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejoen, 34057, Korea
sunheepark@kaeri.re.kr
Korean Chemical Engineering Research, December 2016, 54(6), 863-870(8), 10.9713/kcer.2016.54.6.863 Epub 6 December 2016
Download PDF
Abstract
본 논문의 목적은 소듐냉각고속로(sodium cooled fast reactor, SFR)와 초임계 CO2 Brayton cycle의 연계 시, 원자로 열수송 계통과 동력변환 계통의 압력 경계를 형성하는 회로인쇄형 열교환기의 경계면에 균열이 발생해 고압(약 200 bar) 의 CO2가 상압 수준의 액체소듐유로 측에 유입되었을 때의 물리/화학적 현상을 파악하여 열교환기 설계에 활용 가능한 실험 자료를 생산하는 것이다. 열교환기의 소듐-CO2 경계면 균열 현상은 경계면의 균열 크기에 따라 미세 균열에 의한 소듐유로막힘(plugging) 현상과 상대적으로 큰 균열에 의한 열교환기 재료손상(wastage) 현상으로 나뉜다. Plugging 실험결과, 소듐유로 직경이 3mm일 때 CO2 주입 즉시 소듐 흐름이 정지한 반면 소듐유로 직경이 5 mm일 때는 유량이 감소되기 시작하는 시점은 3 mm의 경우와 유사하게 CO2 주입 즉시 나타났지만 소듐의 흐름이 완전히 정지할 때까지는 상대적으로 오랜 시간이 소요되었다. 이러한 실험결과는 실제 열교환기의 소듐-CO2 경계면에서 미세균열이 발생했을 때, 소듐유로 직경이 3 mm로 좁을 경우 균열 발생과 동시에 해당 소듐유로가 반응생성물에 의해 막혀 해당 유로 외의 유로들로 지속적인 열교환기 운전이 가능하지만, 소듐유로의 직경이 5 mm로 넓어질 경우 소듐유로가 고체생성물에 의해 즉시 막히지 않고 생성물이 소듐유로를 따라 계통 내부를 이동하다 일정 농도 이상이 되어야 소듐유로를 막게 할 것으로 예상할 수 있는 결과이다. Wastage 실험결과, 열교환의 재질(STS316, Inconel600, G91 합금강), 운전온도(400~500 °C), 노즐직경(0.2~0.8 mm), 시편-노즐 거리(2~6 mm)와 무관하게 고압(약 200~250 bar)의 CO2 분사에 의한 시편의 물리적 손상(erosion) 현상은 발생하지 않았다. 노즐에서의 분사되는 CO2의 분사속도는 마하 0.4~0.7인 것으로 확인되었다. 본 연구의 실험결과는 열교환기 파손 대처 설계에 배경 실험 자료로 활용될 것으로 기대된다.
We investigated the physical/chemical phenomena that a slow loss of CO2 inventory into sodium after the sodium-CO2 boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical CO2 Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as CO2 was injected through the nozzle at 300~400 °C in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after CO2 injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-CO2 fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of CO2 (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature (400~500 °C), or the diameter of the CO2 nozzle (0.2~0.8 mm). Velocities at the CO2 nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.
References
Dostal V, Hejzlar P, Todreas NE, Nucl. Technol., 147, 388 (2004)
Dostal V, Hejzlar P, Driscoll MJ, Nucl. Technol., 154, 265 (2006)
Dostal V, Hejzlar P, Driscoll MJ, Nucl. Technol., 154, 283 (2006)
Chang YI, Konomura M, Pinto PL, J. Nucl. Sci. Technol., 44, 264 (2007)
Moisseytsev A, Sienicki JJ, Nucl. Eng. Des., 239, 1362 (2009)
Momozaki Y, Cho DH, Sienicki JJ, Moisseytsev A, Nucl. Technol., 171, 153 (2010)
Miyahara S, Ishikawa H, Yoshizawa Y, Nucl. Eng. Des., 241, 1319 (2011)
Floyd J, Alpy N, Moisseytsev A, Haubensack D, Rodriguez G, Sienicki J, Avakian G, Nucl. Eng. Des., 260, 78 (2013)
Vivaldi D, Gruy F, Simon N, Perrais C, Chem. Eng. Res. Des., 91(4), 640 (2013)
Yoon HJ, Ahn Y, Lee JI, Addad Y, Nucl. Eng. Des., 245, 223 (2012)
Jeong WS, Jeong YH, Nucl. Eng. Des., 262, 12 (2013)
Halimi B, Suh KY, Energy Conv. Manag., 63, 38 (2012)
Locatelli G, Mancini M, Todeschini N, Energy Policy, 61, 1503 (2013)
Latge C, Simon N, “Investigation of Sodium-carbon Dioxide Interactions; Potential Consequences on Reactor Operation,” Proceeding of Global 2007, Boise, Idaho, September 9-13(2007).
Chang YI, Grandy C, Pinto PL, Konomura M, “Small Modular Fast Reactor Design Description,” ANL-SMFR-1, Argonne National Laboratory, July 1(2005).
Dostal V, Driscoll MJ, Hejzlar P, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” MIT-ANPTR-100, Massachusetts Institute of Technology, March 10(2004).
Hori M, Atom. Energ. Re., 18, 707 (1980)
Eoh JH, Jeong JY, Han JW, Kim SO, Ann. Nucl. Energy, 35, 2172 (2008)
Eoh JH, No HC, Yoo YH, Jeong JY, Kim JM, Kim SO, J. Nucl. Sci. Technol., 47, 1023 (2010)
Eoh JH, No HC, Yoo YH, Kim SO, Nucl. Technol., 173, 99 (201)
Eoh JH, No HC, Lee YB, Kim SO, Nucl. Eng. Des., 259, 88 (2013)
Lee TH, Cha JE, Eoh JH, Kim SO, Hahn DH, “Preliminary Design of PCHE in S-CO2 Brayton Cycle Coupled to KALIMER-600,” Transactions of the Korean Nuclear Society Spring Meeting 2008, Gyeongju, Korea, May 29-30(2008).
Jeong JY, Kim JM, Kim TJ, Choi JH, Kim BH, “Wastage Characteristics of a Modified 9Cr-1Mo Steel Tube Material for a SFR SG,” Transactions of the Korean Nuclear Society Spring Meeting 2009, Jeju, Korea, May 22(2009).
Gunther WH, “Sodium Technology,” Atomics International, North American Rockwell, California(1970).
Dostal V, Hejzlar P, Driscoll MJ, Nucl. Technol., 154, 265 (2006)
Dostal V, Hejzlar P, Driscoll MJ, Nucl. Technol., 154, 283 (2006)
Chang YI, Konomura M, Pinto PL, J. Nucl. Sci. Technol., 44, 264 (2007)
Moisseytsev A, Sienicki JJ, Nucl. Eng. Des., 239, 1362 (2009)
Momozaki Y, Cho DH, Sienicki JJ, Moisseytsev A, Nucl. Technol., 171, 153 (2010)
Miyahara S, Ishikawa H, Yoshizawa Y, Nucl. Eng. Des., 241, 1319 (2011)
Floyd J, Alpy N, Moisseytsev A, Haubensack D, Rodriguez G, Sienicki J, Avakian G, Nucl. Eng. Des., 260, 78 (2013)
Vivaldi D, Gruy F, Simon N, Perrais C, Chem. Eng. Res. Des., 91(4), 640 (2013)
Yoon HJ, Ahn Y, Lee JI, Addad Y, Nucl. Eng. Des., 245, 223 (2012)
Jeong WS, Jeong YH, Nucl. Eng. Des., 262, 12 (2013)
Halimi B, Suh KY, Energy Conv. Manag., 63, 38 (2012)
Locatelli G, Mancini M, Todeschini N, Energy Policy, 61, 1503 (2013)
Latge C, Simon N, “Investigation of Sodium-carbon Dioxide Interactions; Potential Consequences on Reactor Operation,” Proceeding of Global 2007, Boise, Idaho, September 9-13(2007).
Chang YI, Grandy C, Pinto PL, Konomura M, “Small Modular Fast Reactor Design Description,” ANL-SMFR-1, Argonne National Laboratory, July 1(2005).
Dostal V, Driscoll MJ, Hejzlar P, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” MIT-ANPTR-100, Massachusetts Institute of Technology, March 10(2004).
Hori M, Atom. Energ. Re., 18, 707 (1980)
Eoh JH, Jeong JY, Han JW, Kim SO, Ann. Nucl. Energy, 35, 2172 (2008)
Eoh JH, No HC, Yoo YH, Jeong JY, Kim JM, Kim SO, J. Nucl. Sci. Technol., 47, 1023 (2010)
Eoh JH, No HC, Yoo YH, Kim SO, Nucl. Technol., 173, 99 (201)
Eoh JH, No HC, Lee YB, Kim SO, Nucl. Eng. Des., 259, 88 (2013)
Lee TH, Cha JE, Eoh JH, Kim SO, Hahn DH, “Preliminary Design of PCHE in S-CO2 Brayton Cycle Coupled to KALIMER-600,” Transactions of the Korean Nuclear Society Spring Meeting 2008, Gyeongju, Korea, May 29-30(2008).
Jeong JY, Kim JM, Kim TJ, Choi JH, Kim BH, “Wastage Characteristics of a Modified 9Cr-1Mo Steel Tube Material for a SFR SG,” Transactions of the Korean Nuclear Society Spring Meeting 2009, Jeju, Korea, May 22(2009).
Gunther WH, “Sodium Technology,” Atomics International, North American Rockwell, California(1970).