ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 28, 2016
Accepted January 19, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법

H2S Poisoning Effect and Recovery Methods of Polymer Electrolyte Membrane Fuel Cell

울산대학교 화학공학부, 44610 울산광역시 남구 대학로 93
School of Chemical Engineering, University of Ulsan, 93, Daehak-ro , Nam-gu, Ulsan, 44610, Korea
jbkim@ulsan.ac.kr
Korean Chemical Engineering Research, February 2017, 55(1), 107-114(8), 10.9713/kcer.2017.55.1.107 Epub 2 February 2017
downloadDownload PDF

Abstract

고분자전해질 연료전지(PEMFC: polymer electrolyte membrane fuel cell)는 일산화탄소(CO)나 황화수소(H2S)가 포함된 연료가 주입될 경우 성능이 저하된다. 일반적으로 멀캅탄 계열의 부취제가 첨가된 탄화수소를 개질하여 생성된 수소에는 미량의 황화수소가 포함되어 있다. 본 연구에서는 황화수소를 수소에 첨가하여 anode에 주입하였을 경우에 연료전지 성능에 미치는 영향을 파악하고, 3가지 다른 회복방법인 순수 수소 주입법, 전위 순환법과 물 순환법을 적용한 경우의 회복률을 비교하여 보았다. PEMFC의 성능은 전기화학적 방법인 polarization curve, electrochemical impedance spectroscopy (EIS)와 cyclic voltammetry (CV)를 사용하여 분석하였다. 피독에 대한 회복방법인 순수 수소 주입법과 전위 순환법을 사용한 경우에는 회복률이 적었고, 물 순환법을 사용한 경우에는 초기에 대비하여 약 95% 이상 성능이 회복된 것을 확인하였다. 직접적으로 피독에 노출된 anode에 물을 흘린 경우의 성능회복률이 높았으며, cathode에 흘린 경우에도 물의 crossover에 의한 효과로 전위 순환법보다 우수한 회복률을 보였다. 이러한 연구결과로부터 황화수소 피독에 대한 회복기법을 구축함으로서 연료전지의 내구성을 향상시킬 수 있고, 불순물이 미량 함유된 저가 수소의 사용을 가능하게 함으로서 연료전지 보급에도 기여할 수 있을 것이다.
The performance of polymer electrolyte membrane fuel cell (PEMFC) could be deteriorated when fuel contains contaminants such as carbon monoxide (CO) or hydrogen sulfide (H2S). Generally, H2S is introduced in hydrogen by steam reforming of hydrocarbon which has mercaptan as odorant. H2S poisoning effect on PEMFC performance was examined on this study. Pure hydrogen injection, voltage cycling and water circulation methods were compared as performance recovery methods. The PEMFC performance was analyzed using electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure hydrogen injection and voltage cycling methods showed low recovery ratio, however, water circulation method showed high recovery ratio over 95%. Because anode was directly poisoned by H2S, anode water circulation showed higher recovery ratio compared to the other methods. Water circulation method was developed to recover PEMFC performance from H2S poisoning. This method could contribute to PEMFC durability and commercialization.

References

Vishnyakov VM, Vacuum, 80(10), 1053 (2006)
Ralph TR, Platinum Met. Rev., 43(1), 14 (1999)
Appleby AJ, Sci. Am., 281, 74 (1999)
Lloyd AC, Sci. Am., 281, 80 (1999)
Dyer CK, Sci. Am., 281, 88 (1999)
Lee DY, Hwang SW, Int. J. Hydrog. Energy, 33(11), 2790 (2009)
Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Stevens DA, Dahn JR, Carbon, 43, 179 (2005)
Jeong J, Song M, Chung H, Na I, Lee J, Lee H, Park K, Korean Chem. Eng. Res., 52(5), 558 (2014)
Park S, Popov BN, Korean J. Chem. Eng., 31(8), 1384 (2014)
Park SM, O’Brien TJ, “Effects of Several Trace Contaminants on Fuel Cell Performance,” Technical Report (# DOE/METC/RI-80/16), Department of Energy, Morgantown, WV, USA, 1979.
Hayter PR, Mitchell P, Dams RAJ, Dudfield C, Gladding N, “The Effect of Contaminants in the Fuel and Air Streams on the Performance of a Solid Polymer Fuel Cell,” Contract Report(ETSUF/02/00126/REP), Wellman CJB Limited, Portsmouth, UK,1997.
Lee H, Song J, Kim K, Kim S, Ahn B, Lim T, Park K, Korean Chem. Eng. Res., 48(3), 311 (2010)
Lee H, Song J, Kim K, Kim S, Ahn B, Lim T, Park K, Korean Chem. Eng. Res., 49(1), 15 (2011)
Murthy M, Esayian M, Lee WK, Van Zee JW, J. Electrochem. Soc., 150(1), A29 (2003)
Giorgi L, Pozio A, Bracchini C, Giorgi R, Turtu S, J. Appl. Electrochem., 31(3), 325 (2001)
Fuel Cell Handbook, 5th ed. US Department of Energy, West Virginia, 2000.
Loucka T, J. Electroanal. Chem., 31(2), 319 (1971)
Contractor AQ, Lal H, J. Electroanal. Chem., 96(2), 175 (1979)
Mohtadi R, Lee WK, Van Zee JW, Appl. Catal. B: Environ., 56(1-2), 37 (2005)
Shi WY, Yi BL, Hou M, Jing FN, Yu HM, Ming PW, J. Power Sources, 164(1), 272 (2007)
Shi W, Yi B, Hou M, Shao Z, J. Hydrol. Eng., 32(17), 4412 (2007)
Knight S, Jia N, Chuy C, Zhang J, “Fuel Cell Seminar 2005: Fuel Cell Progress,” Challenges and Markets, Palm Springs, California (2005).
Shah AA, Walsh FC, J. Power Sources, 185(1), 287 (2008)
Li LY, King DL, Catal. Today, 116(4), 537 (2006)
Pillay D, Johannes MD, Surface Science, 602, 2752 (2008)
Mohtadi R, Lee WK, Cowan S, Van Zee JW, Murthy M, Electrochem. Solid State Lett., 6(12), A272 (2003)
Sim WJ, Kim DW, Choi SH, Kim KJ, Ahn HG, Jung MC, Park K, Korean Chem. Eng. Res., 46(2), 286 (2008)
Mohtadi R, Lee WK, Van Zee JW, J. Power Sources, 138(1-2), 216 (2004)
Kakati BK, Kucernak RJ, J. Power Sources, 252, 317 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로