Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 12, 2016
Accepted December 5, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Morphology of Sub-Microscale Atmospheric Aerosols composed of Two Liquid Phases According to the Loading Ratio of Organics/Water
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
Korean Chemical Engineering Research, February 2017, 55(1), 130-134(5), 10.9713/kcer.2017.55.1.130 Epub 2 February 2017
Download PDF
Abstract
Organic aerosols dispersed in the atmosphere likely undergo phase separation. Such internally mixed particles are often described as comprising an organic phase and an aqueous phase separately. We studied the morphology of two liquid separated aerosols in the sub-microscale by using a simple thermodynamic model with Russian doll geometry. The morphology of particles can be easily predicted from the simple criteria on the surface tension and two algebraic equations (the volume constraint and Young equation). This result may give the potential explanation about the complex morphology of the organic airborne particles
References
Maria SF, Russell LM, Gilles MK, Myneni SCB, Science, 306, 1921 (2004)
Park SS, Cho SY, Kim SJ, Korean Chem. Eng. Res., 48(1), 20 (2010)
Pye HOT, Murphy BN, Xu L, Ng NL, Carlton AG, Guo H, Weber R, Vasilakos P, Appel KW, Budisulistiorini SH, Surratt JD, Nenes A, Hu W, Jimenez JL, Wertz GI, Misztal PK, Goldstein AH, Atmos. Chem. Phys. Discuss, doi:10.5194/acp-2016-719 (2016)
Song M, Marcolli C, Krieger UK, Zuend A, Peter T, Atmos. Chem. Phys., 12, 2691 (2012)
Zawadowicz MA, Proud SR, Seppalalinen SS, Cziczo DJ, Atmos. Chem. Phys., 15, 8975 (2015)
Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH, Phys. Chem. Chem. Phys., 15, 11441 (2013)
Zhang Q, Thompson JE, GeoResJ, 3-4, 9 (2014)
De Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE, Rev. Geophys., doi:10.1029/2010RG000349 (2011)., 49(2)
Zuend A, Marcolli C, Peter T, Seinfeld JH, Atmos. Chem. Phys., 10, 7795 (2010)
Zuend A, Seinfeld JH, Fluid Phase Equilib., 337, 201 (2013)
Amundson NR, Caboussat A, He JW, Martynenko AV, Savarin VB, Seinfeld JH, Yoo KY, Atmos. Chem. Phys., 6, 975 (2006)
Amundson NR, Caboussat A, He JW, Martynenko AV, Seinfeld JH, J. Geophys. Res. Atmos., 112, D24S13 (2007)
Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, Zhou M, Atmos. Chem. Phys., 6, 613 (2006)
Qiu YQ, Molinero V, J. Am. Chem. Soc., 137(33), 10642 (2015)
Obeidat A, Hrahsheh F, Wilemski G, J. Phys. Chem. B, 119(29), 9304 (2015)
You Y, Renbaum-Wolff L, Carreras-Sospedra M, Hanna SJ, Hiranuma N, Kamald S, Smith ML, Zhang X, Weber RJ, Shilling JE, Dabdub D, Martin ST, Bertram AK, Proc. Nat’l Acad. Sci., 109, 13188 (2012)
Veghte DP, Bittner DR, Freedman MA, Anal. Chem., 86, 2436 (2014)
Kwamena NOA, Buajarern J, Reid JP, J. Phys. Chem. A, 114, 5787 (2010)
Vargaftik NB, Volkov BN, Voljak LD, J. Phys. Chem. Ref Data, 12(3), 817 (1983)
Goebel A, Lunkenheimer K, Langmuir, 13(2), 369 (1997)
Park SS, Cho SY, Kim SJ, Korean Chem. Eng. Res., 48(1), 20 (2010)
Pye HOT, Murphy BN, Xu L, Ng NL, Carlton AG, Guo H, Weber R, Vasilakos P, Appel KW, Budisulistiorini SH, Surratt JD, Nenes A, Hu W, Jimenez JL, Wertz GI, Misztal PK, Goldstein AH, Atmos. Chem. Phys. Discuss, doi:10.5194/acp-2016-719 (2016)
Song M, Marcolli C, Krieger UK, Zuend A, Peter T, Atmos. Chem. Phys., 12, 2691 (2012)
Zawadowicz MA, Proud SR, Seppalalinen SS, Cziczo DJ, Atmos. Chem. Phys., 15, 8975 (2015)
Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH, Phys. Chem. Chem. Phys., 15, 11441 (2013)
Zhang Q, Thompson JE, GeoResJ, 3-4, 9 (2014)
De Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE, Rev. Geophys., doi:10.1029/2010RG000349 (2011)., 49(2)
Zuend A, Marcolli C, Peter T, Seinfeld JH, Atmos. Chem. Phys., 10, 7795 (2010)
Zuend A, Seinfeld JH, Fluid Phase Equilib., 337, 201 (2013)
Amundson NR, Caboussat A, He JW, Martynenko AV, Savarin VB, Seinfeld JH, Yoo KY, Atmos. Chem. Phys., 6, 975 (2006)
Amundson NR, Caboussat A, He JW, Martynenko AV, Seinfeld JH, J. Geophys. Res. Atmos., 112, D24S13 (2007)
Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, Zhou M, Atmos. Chem. Phys., 6, 613 (2006)
Qiu YQ, Molinero V, J. Am. Chem. Soc., 137(33), 10642 (2015)
Obeidat A, Hrahsheh F, Wilemski G, J. Phys. Chem. B, 119(29), 9304 (2015)
You Y, Renbaum-Wolff L, Carreras-Sospedra M, Hanna SJ, Hiranuma N, Kamald S, Smith ML, Zhang X, Weber RJ, Shilling JE, Dabdub D, Martin ST, Bertram AK, Proc. Nat’l Acad. Sci., 109, 13188 (2012)
Veghte DP, Bittner DR, Freedman MA, Anal. Chem., 86, 2436 (2014)
Kwamena NOA, Buajarern J, Reid JP, J. Phys. Chem. A, 114, 5787 (2010)
Vargaftik NB, Volkov BN, Voljak LD, J. Phys. Chem. Ref Data, 12(3), 817 (1983)
Goebel A, Lunkenheimer K, Langmuir, 13(2), 369 (1997)