Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 25, 2016
Accepted October 13, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
황산/글루코스 용액으로부터 전기투석에 의한 황산 분리
Separation of Sulfuric Acid from Sulfuric Acid/Glucose Solution by Electrodialysis
순천대학교 화학공학과, 57922 전라남도 순천시 중앙로 235 1(주)ETIS, 10122 경기도 김포시 고촌읍 황색로45번길 97 2(주)CNL Energy, 57922 전라남도 순천시 중앙로 235
Department of Chemical Engineering, Sunchon National University, 235, Jungang-ro, Suncheon, Jeonnam, 57922, Korea 1ETIS Co, ETIS Co, 97, Hwangsaek-ro 45beon-gil, Gochon-eup, Gimpo, Gyeonggi, 10122, Korea 2CNL Energy Co, 235, Jungang-ro, Suncheon, Jeonnam, 57922, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, February 2017, 55(1), 7-12(6), 10.9713/kcer.2017.55.1.7 Epub 1 February 2017
Download PDF
Abstract
황산에 의한 바이오매스의 당화 후 황산의 회수는 매우 중요하다. 본 연구에서는 전기투석 방법에 의해 황산과 글루코스 혼합용액으로부터 황산을 분리하는 연구를 하였다. 전기투석은 음이온막과 양이온막을 사용한 3실 방식이 일반적인데 본 연구에서는 음이온막 만을 사용한 2실 방식을 실험했다. 글루코스 10~30% 황산농도 1~3M 농도 범위의 용액에서 2실 방식의 전기투석으로 황산을 완전 분리할 수 있었다. 실험한 3종류의 음이온 막 중에서 확산과 대류의 영향이 작은 음이온 막에서는 전류밀도에 비례해 황산분리 속도가 증가하였다. 전기를 가하지 않고 확산과 대류에 의해 황산분리 45%를 달성할 수 있었다.
Recovery of sulfuric acid is very important after biomass converted to sugar by acid hydrolysis. In this work, the separation of sulfuric acid from sulfuric acid/glucose solution was studied by electrodiaysis. Three chamber method, which requires both anion membrane and cation membrane, is the most commonly used in the electrodialysis process, but two chamber method using only an anion membrane was the focus of this study. Sulfuric acid was perfectly separated from a mixture of 10~30 wt% glucose and 1~3 M sulfuric acid by electrodialysis using two chamber method. The separation rate of sulfuric acid lineary increased with higher current density when the affect of diffusion and convection of the membrane was small. Without electric energy, 45% of sulfuric acid was separated by diffusion and convection only.
References
Vertes A, “Biomass to Biofuels”, John Wiley & Sons, New York(2014).
Nanguneri SR, Hester RD, Sep. Sci. Technol., 25, 1829 (1990)
Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1 (2016)
Ladisch MR, “Bioseparation Engineering,” New York: John Wiley & Sons, Inc(2001).
Xie Y, Phelps D, Lee CH, Sedlak M, Ho N, Wang NHL, Ind. Eng. Chem. Res., 44(17), 6816 (2005)
Wickramasinghe SR, Grzenia DL, Desalination, 234(1-3), 144 (2008)
Nam HG, Jo SH, Mun S, Process Biochem., 46(10), 2044 (2011)
Hartmann BM, Kaar W, Yoo IK, Lua LHL, Falconer RJ, Middelberg APJ, Biotechnol. Bioeng., 104(5), 973 (2009)
Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45(8), 1368 (2010)
Jeon KY, Kim JH, Process Biochem., 44(7), 736 (2009)
Oh HJ, Jang HR, Jung KY, Kim JH, Process Biochem., 47(2), 331 (2012)
Marti-Calatayud MC, Buzzi DC, Garcia-Gabaldon M, Ortega E, Bernardes AM, Tenorio JAS, Perez-Herranz V, Desalination, 343, 120 (2014)
Abla C, Rachid D, Energy Procedia, 74, 1418 (2015)
Rohman FS, Othman MR, Aziz N, Chem. Eng. J., 162(2), 466 (2010)
Dodgson KS, Biochem. J., 78, 312 (1961)
Wang XL, Wang YM, Zhang X, Feng HY, Xu TW, Bioresour. Technol., 147, 442 (2013)
Nanguneri SR, Hester RD, Sep. Sci. Technol., 25, 1829 (1990)
Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1 (2016)
Ladisch MR, “Bioseparation Engineering,” New York: John Wiley & Sons, Inc(2001).
Xie Y, Phelps D, Lee CH, Sedlak M, Ho N, Wang NHL, Ind. Eng. Chem. Res., 44(17), 6816 (2005)
Wickramasinghe SR, Grzenia DL, Desalination, 234(1-3), 144 (2008)
Nam HG, Jo SH, Mun S, Process Biochem., 46(10), 2044 (2011)
Hartmann BM, Kaar W, Yoo IK, Lua LHL, Falconer RJ, Middelberg APJ, Biotechnol. Bioeng., 104(5), 973 (2009)
Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45(8), 1368 (2010)
Jeon KY, Kim JH, Process Biochem., 44(7), 736 (2009)
Oh HJ, Jang HR, Jung KY, Kim JH, Process Biochem., 47(2), 331 (2012)
Marti-Calatayud MC, Buzzi DC, Garcia-Gabaldon M, Ortega E, Bernardes AM, Tenorio JAS, Perez-Herranz V, Desalination, 343, 120 (2014)
Abla C, Rachid D, Energy Procedia, 74, 1418 (2015)
Rohman FS, Othman MR, Aziz N, Chem. Eng. J., 162(2), 466 (2010)
Dodgson KS, Biochem. J., 78, 312 (1961)
Wang XL, Wang YM, Zhang X, Feng HY, Xu TW, Bioresour. Technol., 147, 442 (2013)