ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 26, 2016
Accepted November 23, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer

대구경북과학기술원 태양에너지융합연구센터, 42988 대구광역시 달성군 현풍면 테크노중앙대로 333 1광운대학교 화학공학과, 01897 서울특별시 노원구 광운로 20
Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Korea 1Department of Chemical Engineering, Kwangwoon University, 20, Gwangun-ro, Nowon-gu, Seoul, 01897, Korea
Korean Chemical Engineering Research, February 2017, 55(1), 93-98(6), 10.9713/kcer.2017.55.1.93 Epub 2 February 2017
downloadDownload PDF

Abstract

본 실험에서는 Cu2ZnSnS4(CZTS) 태양전지의 흡수층 상부에 다양한 조성을 갖는 Zn(Ox,S1-x) 버퍼층을 적용하여 특성 변화를 살펴보았다. Zn(O0.76,S0.24), Zn(O0.56, S0.44), Zn(O0.33,S0.67) 그리고 Zn(O0.17,S0.83)의 4가지 단일막의 경우, 전자-정공의 재결합 억제에 유리한 밴드갭 구조를 나타내는 Zn(O0.76,S0.24) 버퍼층을 소자에 적용했다. Zn(O0.76,S0.24) 버퍼층을 소자에 적용 시, 흡수층으로부터 S가 버퍼층으로 확산되어 소자 내에서의 버퍼층은 Zn(O0.7,S0.3)의 조성을 나타냈다. CdS 버퍼층의 EV보다 낮은 에너지 준위를 갖는 Zn(O0.7,S0.3) 버퍼층은 전자-정공 재결합을 효과적으로 억제하기 때문에 CZTS 태양전지의 JSC와 VOC 특성을 향상시켰다. 이를 통해 CdS 버퍼층이 적용된 CZTS 태양전지의 효율인 2.75%가 Zn(O0.7,S0.3) 버퍼층 적용을 통해 4.86%로 향상되었다.
This experiment investigated characteristic changes in a Cu2ZnSnS4(CZTS) solar cell by applying a Zn (Ox,S1-x) butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as Zn(O0.76,S0.24), Zn(O0.56, S0.44), Zn(O0.33,S0.67), and Zn(O0.17,S0.83), the Zn(O0.76,S0.24) buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the Zn(O0.76,S0.24) buffer layer to the device, the buffer layer in the device showed the composition of Zn(O0.7,S0.3) because S diffused into the buffer layer from the absorber layer. The Zn(O0.7,S0.3) buffer layer, having a lower energy level (EV) than a CdS buffer layer, improved the JSC and VOC characteristics of the CZTS solar cell because the Zn(O0.7,S0.3) buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the Zn(O0.7,S0.3) buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.

References

Hallegatte S, Bangalore M, Bonzanigo L, Fay M, Kane T, Narloch U, Rozenberg J, Treguer D, Vogt-Schilb A, “Shock Waves: Managing the Impacts of Climate Change on Poverty,”World Bank Group, USA(2016).
Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulovic V, Energy Environ. Sci., 8, 1200 (2015)
Ramasamy K, Malik MA, O’Brien P, Chem. Commun., 48, 5703 (2012)
Winkler MT, Wang W, Gunawan O, Hovel HJ, Todorov TK, Mitzi DB, Energy Environ. Sci., 7, 1029 (2014)
Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Prog. Photovolt: Res. Appl., 23, 805 (2015)
Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M, Phys. Status Solidi A-Appl. Res., 10(8), 583 (2016)
Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB, Adv. Eng. Mater., 4, 130146 (2014)
Son D, Kim D, Park S, Yang K, Nam D, Cheong H, Kang J, Chem. Mater., 27, 5180 (2015)
Yang K, Sim J, Son D, Kim D, Kim GY, Jo W, Song S, Kim J, Nam D, Cheong H, Kang J, Prog. Photovolt: Res. Appl., 23, 1771 (2015)
Fairbrother A, Fontane X, Izquierdo-Roca V, Placidi M, Sylla D, Espindola-Rodriguez M, Lopez-Marino S, Pulgarin FA, Vigil-Galan O, Perez-Rodriguez A, Saucedo E, Prog. Photovolt: Res. Appl., 22, 479 (2014)
Vigil-Galan O, Espindola-Rodriguez M, Courel M, Fontane X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Perez-Rodriguez A, Sol. Energy Mater. Sol. Cells, 117, 246 (2013)
Colombara D, Robert EVC, Crossay A, Taylor A, Guennou M, Arasimowicz M, Malaquias JCB, Djemour R, Dale PJ, Sol. Energy Mater. Sol. Cells, 123, 220 (2014)
Watjen JT, Engman J, Edoff M, Platzer-Bjorkman C, Appl. Phys. Lett., 100, 173510 (2012)
Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q, Energy Environ. Sci., 8, 3134 (2015)
Huang TJ, Yin X, Qi G, Gong H, Phys. Status Solidi A-Appl. Res., 8(9), 735 (2014)
Chen SY, Walsh A, Gong XG, Wei SH, Adv. Mater., 25(11), 1522 (2013)
Chen S, Yang J, Gong XG, Walsh A, Wei S, Phys. Rev. B, 81, 245204 (2010)
Yin WJ, Wu Y, Wei SH, Noufi R, Al-Jassim MM, Yan Y, Adv. Eng. Mater., 4, 130071 (2014)
Yang K, Sim J, Jeon B, Son D, Kim D, Sung S, Hwang D, Song S, Khadka DB, Kim J, Kang J, Prog. Photovolt: Res. Appl., 23, 862 (2015)
Yang KJ, Sim JH, Son DH, Kim DH, Kang JK, Curr. Appl. Phys., 15(11), 1512 (2015)
Woo K, Kim Y, Yang W, Kim K, Kim I, Oh Y, Kim JY, Moon J, Sci. Rep., 3, 3069 (2013)
Wei H, Ye Z, Li M, Su Y, Yang Z, Zhang Y, CrystEngComm, 13, 2222 (2011)
Malerba C, Biccari F, Ricardo CLA, Valentini M, Chierchia R, Muller M, Santoni A, Esposito E, Mangiapane P, Scardi P, Mittiga A, J. Alloy. Compd., 582, 528 (2014)
Yang K, Son D, Sung S, Sim J, Kim Y, Park S, Jeon D, Kim J, Hwang D, Jeon C, Nam D, Cheong H, Kang J, Kim D, J. Mater. Chem. A, 4, 10151 (2016)
Bar M, Schubert BA, Marsen B, Wilks RG, Pookpanratana S, Blum M, Krause S, Unold T, Yang W, Weinhardt L, Heske C, Schock HW, APL, 99, 222105 (2011)
Platzer-Bjorkman C, Torndahl T, Abou-Ras D, Malmstrom J, Kessler J, Stolt L, J. Appl. Phys., 100, 044506 (2006)
Larina L, Shin D, Kim JH, Ahn BT, Energy Environ. Sci., 4, 3487 (2011)
Ericson T, Scragg JJ, Hultqvist A, Watjen JT, Szaniawski P, Torndahl T, Platzer-Bjorkman C, IEEE J. Photovolt., 4(1), 465 (2014)
Kobayashi T, Kumazawa T, Kao ZJL, Nakada T, Sol. Energy Mater. Sol. Cells, 119, 129 (2013)
Barkhouse DAR, Haight R, Sakai N, Hiroi H, Sugimoto H, Mitzi DB, APL, 100, 193904 (2012)
Klenk R, Steigert A, Rissom T, Greiner D, Kaufmann CA, Unold T, Lux-Steiner MC, Prog. Photovolt: Res. Appl., 22, 161 (2014)
Hultqvist A, Platzer-Bjorkman C, Coronel E, Edoff M, Sol. Energy Mater. Sol. Cells, 95(2), 497 (2011)
Shin DH, Kim JH, Shin YM, Yoon KH, Al-Ammar EA, Ahn BT, Prog. Photovolt: Res. Appl., 21, 217 (2013)
Huang S, Luo W, Zou Z, J. Phys. D-Appl. Phys., 46, 235108 (2013)
Schmid D, Ruckh M, Schock HW, Sol. Energy Mater. Sol. Cells, 41/42, 281 (1996)
Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y, J. Appl. Phys., 89(12), 8327 (2001)
Persson C, Phys. Rev. Lett. PRL, 97, 146403 (2006)
Chen S, Walsh A, Yang JH, Gong XG, Sun L, Yang PX, Chu JH, Wei SH, Phys. Rev. B, 83, 125201 (2011)
Zhang SB, Wei SH, Zunger A, J. Appl. Phys., 83(6), 3192 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로