Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 14, 2016
Accepted January 5, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Dextran/DMSO/초임계 CO2계의 상거동 측정
Measurement of Phase Behavior for Dextran/DMSO/scCO2 System
호남대학교 소방행정학과, 62399 광주광역시 광산구 어등대로 417 1이수화학, 44785 울산광역시 남구 부곡동 156 2전남대학교 응용화학공학부, 61186 광주광역시 북구 용봉로 77
Department of Fire Service Administration, Honam University, 417, Eodeung-daero, Gwangsan-gu, Gwangju, 62399, korea, Korea 1ISU Chemical, 156, Bugok-dong, Nam-gu, Ulsan, 44785, Korea 2School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
chkang@chonnam.ac.kr
Korean Chemical Engineering Research, April 2017, 55(2), 225-229(5), 10.9713/kcer.2017.55.2.225 Epub 31 March 2017
Download PDF
Abstract
최근 약물전달시스템으로 널리 주목받고 있는 dextran의 미립자는 초임계 반용매 공정을 통해 얻을 수 있다. 초임계 반용매(SAS) 공정에서는 DMSO (dimethyl sulfoxide)에 용해되어 있는 dextran이 반용매인 초임계 CO2의 첨가에 의한 재결정으로 얻어진다. 본 연구에서는 이 공정의 적절한 운전조건을 제시하기 위하여 가변부피 셀을 이용하여 cloud point를 측정함으로써 Dexran/DMSO/CO2의 상거동을 관찰하였다 실험결과로부터 dextran 미립자 제조를 위한 초임계 반용매 공정의 적절한 온도(300.15 K~330.15 K), 압력(90 bar~130 bar), 용질의 농도(5 mg/ml~20 mg/ml)의 범위를 결정하였다.
Micron-sized dextran particles, which now attract wide attention as a promising drug delivery systems, can be prepared via the supercritical anti-solvent (SAS) process. In SAS process, dextran particles are obtained as a result of recrystallization of dissolved dextran in dimethyl sulfoxide (DMSO) on addition of supercritical CO2 as an anti-solvent. In this work, with an intention to provide information on the feasible operating conditions of the process, the phase behavior of Dexran/DMSO/CO2 is observed by measuring the cloud point in favor of a variable volume cell. From the experimental study, it is concluded that a feasible operating condition of the SAS process for preparation of dextran particles would be 300.15 K~330.15 K and 90 bar~130 bar, respectively, and solute concentration ranges from 5mg/ml to 20 mg/ml.
References
Seo JH, Choi BK, Park TK, Prospect. Ind. Chem., 8(3), 60 (2005)
Krukonis V, “Supercritical Fluid Nucleation of Difficult to Comminute Solids,” the AIChE Annual Meeting, San Francisco (1984).
Tucker SC, Chem. Rev., 99(2), 391 (1999)
Kajimoto O, Chem. Rev., 99(2), 355 (1999)
Bahrami M, Ranjbarian S, J. Supercrit. Fluids, 40(2), 263 (2007)
Lee YW, News Inf. Chem. Eng., 19(3), 325 (2001)
Lee YW, News Inf. Chem. Eng., 19(4), 457 (2001)
Lee JC, Kim CR, Byun HS, Korean J. Chem. Eng., 31(12), 2266 (2014)
Bahrami M, Ranjbarian S, J. Supercrit. Fluids, 40(2), 263 (2007)
Reverchon E, Adami R, J. Supercrit. Fluids, 37(1), 1 (2006)
Paulaitis ME, “Chemical Engineering at Supercritical Fluid Conditions,” Ann Arbor Science(1983).
Hyatt JM, Wong R, Lahiere J, Johnston KP, Ind. Eng. Chem. Res., 26, 56 (1987)
Icoz DZ, Moraru CI, Kokini JL, Carbohydr. Polym., 62(2), 120 (2005)
Han CN, Kang CH, Korean Chem. Eng. Res., 53(4), 445 (2015)
Kang DY, Min BJ, Rho SG, Kang CH, Korean Chem. Eng. Res., 46(5), 958 (2008)
Jang YS, Byun HS, J. Chem. Eng. Data, 59, 1931 (2014)
Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958 (2015)
Byun HS, Korean Chem. Eng. Res., 54(2), 206 (2016)
Krukonis V, “Supercritical Fluid Nucleation of Difficult to Comminute Solids,” the AIChE Annual Meeting, San Francisco (1984).
Tucker SC, Chem. Rev., 99(2), 391 (1999)
Kajimoto O, Chem. Rev., 99(2), 355 (1999)
Bahrami M, Ranjbarian S, J. Supercrit. Fluids, 40(2), 263 (2007)
Lee YW, News Inf. Chem. Eng., 19(3), 325 (2001)
Lee YW, News Inf. Chem. Eng., 19(4), 457 (2001)
Lee JC, Kim CR, Byun HS, Korean J. Chem. Eng., 31(12), 2266 (2014)
Bahrami M, Ranjbarian S, J. Supercrit. Fluids, 40(2), 263 (2007)
Reverchon E, Adami R, J. Supercrit. Fluids, 37(1), 1 (2006)
Paulaitis ME, “Chemical Engineering at Supercritical Fluid Conditions,” Ann Arbor Science(1983).
Hyatt JM, Wong R, Lahiere J, Johnston KP, Ind. Eng. Chem. Res., 26, 56 (1987)
Icoz DZ, Moraru CI, Kokini JL, Carbohydr. Polym., 62(2), 120 (2005)
Han CN, Kang CH, Korean Chem. Eng. Res., 53(4), 445 (2015)
Kang DY, Min BJ, Rho SG, Kang CH, Korean Chem. Eng. Res., 46(5), 958 (2008)
Jang YS, Byun HS, J. Chem. Eng. Data, 59, 1931 (2014)
Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958 (2015)
Byun HS, Korean Chem. Eng. Res., 54(2), 206 (2016)