Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 8, 2017
Accepted January 31, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도
Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether
한남대학교 화공신소재공학과, 34054 대전광역시 유성구 유성대로 1646
Department of Advanced Materials and Chemical Engineering, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
bclee@hannam.ac.kr
Korean Chemical Engineering Research, April 2017, 55(2), 230-236(7), 10.9713/kcer.2017.55.2.230 Epub 31 March 2017
Download PDF
Abstract
약 303 K로부터 약 343 K의 온도 범위와 약 50 bar까지의 압력 범위에서 poly(ethylene glycol) dimethyl ether (PEGDME)에 녹는 이산화탄소(CO2)의 용해도를 측정하였다. 가변부피 투시창이 장착된 고압용 상평형 장치를 사용하여 온도를 변화시키면서 여러 가지 조성을 갖는 CO2+PEGDME 혼합물의 기포점 압력을 측정함으로써 PEGDME에서의 고압 CO2의 용해도를 결정하였다. PEGDME의 분자량이 CO2 용해도에 미치는 영향을 관찰하기 위하여, 두 가지 종류의 분자량을 가진 PEGDME 시료에 대한 CO2 용해도를 비교하였다. 압력이 증가함에 따라 PEGDME에 대한 CO2 용해도는 증가하였으며 온도가 증가함에 따라 용해도는 감소하였다. 같은 온도와 압력에서 비교할 때, 분자량이 더 큰 PEGDME는 질량분율과 몰랄농도 기준으로 더 작은 CO2 용해도를 주었으나, 몰분율 기준으로는 더 큰 CO2 용해도를 주었다.
Solubility data of carbon dioxide (CO2) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of CO2 were determined by measuring the bubble point pressures of the CO2 + PEGDME mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the CO2 solubility, the CO2 solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the CO2 solubility in PEGDME increased. On the other hand, the CO2 solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller CO2 solubility on a mass fraction and molality basis, but gave greater CO2 solubilities on a mole fraction basis.
References
Ramdin M, de Loos TW, Vlugt TJH, Ind. Eng. Chem. Res., 51(24), 8149 (2012)
Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
Lee JH, Shim SB, Korean Chem. Eng. Res., 52(3), 314 (2014)
D’Alessandro DM, Smit B, Long JR, Angew. Chem.-Int. Edit., 49, 6058 (2010)
Khakharia P, Huizinga A, Lopez CJ, Sanchez CS, Mercader FD, Vlugt TJH, Goetheer E, Ind. Eng. Chem. Res., 53(33), 13195 (2014)
MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams C, Shah N, Fennell P, Energy Environ. Sci., 3, 1645 (2010)
“UOP SelexolTM Technology for Acid Gas Removal,” UOP 5241F-01 (2009) (https://www.uop.com).
Rayer AV, Henni A, Tontiwachwuthikul P, Can. J. Chem. Eng., 90(3), 576 (2012)
Schmidt KAG, Mather AE, Can. J. Chem. Eng., 79(6), 946 (2001)
Li JL, Mundhwa M, Henni A, J. Chem. Eng. Data, 52(3), 955 (2007)
Lee BC, Nam SG, Korean J. Chem. Eng., 32(3), 521 (2015)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Jung YH, Jung JY, Jin YR, Lee BC, Baek IH, Kim SH, J. Chem. Eng. Data, 57(12), 3321 (2012)
Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728 (2008)
Lee BC, Korean Chem. Eng. Res., 54(2), 213 (2016)
Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).
Lei ZG, Dai CN, Chen BH, Chem. Rev., 114(2), 1289 (2014)
Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
Lee JH, Shim SB, Korean Chem. Eng. Res., 52(3), 314 (2014)
D’Alessandro DM, Smit B, Long JR, Angew. Chem.-Int. Edit., 49, 6058 (2010)
Khakharia P, Huizinga A, Lopez CJ, Sanchez CS, Mercader FD, Vlugt TJH, Goetheer E, Ind. Eng. Chem. Res., 53(33), 13195 (2014)
MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams C, Shah N, Fennell P, Energy Environ. Sci., 3, 1645 (2010)
“UOP SelexolTM Technology for Acid Gas Removal,” UOP 5241F-01 (2009) (https://www.uop.com).
Rayer AV, Henni A, Tontiwachwuthikul P, Can. J. Chem. Eng., 90(3), 576 (2012)
Schmidt KAG, Mather AE, Can. J. Chem. Eng., 79(6), 946 (2001)
Li JL, Mundhwa M, Henni A, J. Chem. Eng. Data, 52(3), 955 (2007)
Lee BC, Nam SG, Korean J. Chem. Eng., 32(3), 521 (2015)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Jung YH, Jung JY, Jin YR, Lee BC, Baek IH, Kim SH, J. Chem. Eng. Data, 57(12), 3321 (2012)
Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728 (2008)
Lee BC, Korean Chem. Eng. Res., 54(2), 213 (2016)
Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).
Lei ZG, Dai CN, Chen BH, Chem. Rev., 114(2), 1289 (2014)