Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 18, 2016
Accepted December 12, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates
Department of Chemical and Biomolecular Engineering, Seoul National University of Science & Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
Korean Chemical Engineering Research, April 2017, 55(2), 275-278(4), 10.9713/kcer.2017.55.2.275 Epub 31 March 2017
Download PDF
Abstract
Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.
Keywords
References
Moutanabbir O, Gosele U, Annu. Rev. Mater. Res., 40, 469 (2010)
Heyns M, Tsai W, MRS Bull., 34(7), 485 (2009)
Pearsall TP, Bevk J, Feldman LC, Bonar JM, Mannerts JP, Phys. Rev. Lett., 58(7), 729 (1987)
Li JY, Huang CT, Sturm JC, Appl. Phys. Lett., 101(14), 142112 (2012)
Johll H, Samuel M, Koo RY, Kang HC, Yeo YC, Tok ES, J. Appl. Phys., 117(20), 205302 (2015)
Harris JJ, Ashenford DE, Foxon CT, Dobson PJ, Jpyce BA, Appl. Phys. A-Mater. Sci. Process., 33(2), 87 (1984)
Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R, Appl. Phys. Lett., 59(17), 2103 (1991)
Godbey D, Ancona M, J. Vac. Sci. Technol. B, 11(3), 1120 (1993)
Ohtani N, Mokler S, Xie MH, Zhang J, Joyce BA, Jpn. J. Appl. Phys., 33, 2311 (1994)
Ohtani N, Mokler S, Xie MH, Jhang J, Joyce BA, Surf. Sci., 284(3), 305 (1993)
Ohtani N, Mokler S, Joyce BA, Surf. Sci., 295(3), 325 (1993)
Li Y, Hembree G, Venables JA, Appl. Phys. Lett., 67(2), 276 (1995)
Zaima S, Kato K, Kitani T, Matsuyama T, Ikeda H, Yasuda Y, J. Cryst. Growth, 150, 944 (1995)
Gates SM, Greenlief CM, Beach DB, Holbert PA, J. Chem. Phys., 92(5), 3144 (1990)
Gates SM, Kulkarni SK, Appl. Phys. Lett., 58(25), 2963 (1991)
Park SS, Park JH, Kim SJ, Jung SC, Korean Chem. Eng. Res., 46(6), 1063 (2008)
Hong JH, Kim SH, Hahn YB, Korean Chem. Eng. Res., 42(4), 447 (2004)
Hu XF, Xu Z, Dim D, Downer MC, Parkinson PS, Gong B, Hess G, Ekerdt JG, Appl. Phys. Lett., 71(10), 1376 (1997)
Heyns M, Tsai W, MRS Bull., 34(7), 485 (2009)
Pearsall TP, Bevk J, Feldman LC, Bonar JM, Mannerts JP, Phys. Rev. Lett., 58(7), 729 (1987)
Li JY, Huang CT, Sturm JC, Appl. Phys. Lett., 101(14), 142112 (2012)
Johll H, Samuel M, Koo RY, Kang HC, Yeo YC, Tok ES, J. Appl. Phys., 117(20), 205302 (2015)
Harris JJ, Ashenford DE, Foxon CT, Dobson PJ, Jpyce BA, Appl. Phys. A-Mater. Sci. Process., 33(2), 87 (1984)
Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R, Appl. Phys. Lett., 59(17), 2103 (1991)
Godbey D, Ancona M, J. Vac. Sci. Technol. B, 11(3), 1120 (1993)
Ohtani N, Mokler S, Xie MH, Zhang J, Joyce BA, Jpn. J. Appl. Phys., 33, 2311 (1994)
Ohtani N, Mokler S, Xie MH, Jhang J, Joyce BA, Surf. Sci., 284(3), 305 (1993)
Ohtani N, Mokler S, Joyce BA, Surf. Sci., 295(3), 325 (1993)
Li Y, Hembree G, Venables JA, Appl. Phys. Lett., 67(2), 276 (1995)
Zaima S, Kato K, Kitani T, Matsuyama T, Ikeda H, Yasuda Y, J. Cryst. Growth, 150, 944 (1995)
Gates SM, Greenlief CM, Beach DB, Holbert PA, J. Chem. Phys., 92(5), 3144 (1990)
Gates SM, Kulkarni SK, Appl. Phys. Lett., 58(25), 2963 (1991)
Park SS, Park JH, Kim SJ, Jung SC, Korean Chem. Eng. Res., 46(6), 1063 (2008)
Hong JH, Kim SH, Hahn YB, Korean Chem. Eng. Res., 42(4), 447 (2004)
Hu XF, Xu Z, Dim D, Downer MC, Parkinson PS, Gong B, Hess G, Ekerdt JG, Appl. Phys. Lett., 71(10), 1376 (1997)