Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 12, 2017
Accepted February 13, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고분자전해질 연료전지의 성능에 미치는 습도와 플러딩의 영향
Effect of Humidity and Flooding on the Performance of Proton Exchange Membrane Fuel Cell
순천대학교, 57922 전라남도 순천시 매곡동 315 1(주)CNL Energy, 57922 전라남도 순천시 매곡동 315
Sunchon National University, 315, Maegok-dong, Suncheon, Jeonnam, 57922, Korea 1CNL Energy Co., 315, Maegok-dong, Suncheon, Jeonnam, 57922, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, June 2017, 55(3), 302-306(5), 10.9713/kcer.2017.55.3.302 Epub 2 June 2017
Download PDF
Abstract
고분자전해질 연료전지에서 습도는 성능과 내구성에 많은 영향을 준다. 습도가 높아지면 일반적으로 능이 향상되는데 높은 습도는 플러딩을 발생시킬 위험성도 있다. 미세 유로셀에서 상대습도를 변화시키며 IV곡선, LSV, 사이클로 볼타메트리(CV), 임피던스을 측정했다. 70%이상에서 플러딩 현상이 발생함을 확인했다. 고분자막의 이온전도도는 상대습도 80%에서 최고값에 도달했고, 전극의 활성은 플러딩 후에도 상대습도 증가에 따라 상승했다. 상대습도 80%에서 최고 성능 1,700 mA/cm2(@0.6 V)을 얻었다. 상대습도 80%에서 플러딩에 의해 물질전달이 방해 받는 것에 비해 막의 이온전도도 향상이 성능에 더 큰 영향을 줌을 보였다.
Humidity affect performance and durability of proton exchange membrane fuel cell (PEMFC). High humidity of gases generally enhance the performance, but high humidity have the danger of flooding. I-V performance, linear sweep voltammetry, cyclo voltammetry, and impedance of micro-channel cell measured with change of relative humidity (RH). Flooding phenomena started at RH 70%. Ion conductivity of membrane reached maximum value at RH 80%. Maximum current density of 1,700 mA/cm2 (at 0.6 V) was obtained at RH 80%. Therefore the effect of ion conductivity increasement was higher than that of mass transfer decrease by flooding at RH 80%.
Keywords
References
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Ben Amara MEA, Ben Nasrallah S, Int. J. Hydrog. Energy, 40(2), 1333 (2015)
Bozorgnezhad A, Shams M, Kanani H, Hasherninasab M, Ahmadi G, Int. J. Hydrog. Energy, 41(42), 19164 (2016)
Zhu X, Liao Q, Sui PC, Djilali N, J. Power Sources, 195(3), 801 (2010)
He GL, Yamazaki Y, Abudula A, J. Power Sources, 195(6), 1561 (2010)
Wen D, Qi H, Ma L, Lu C, LiKey G, Precision Engineering, 44, 192 (2016)
Roshandel R, Arbabi F, Moghaddam GK, Renew. Energy, 41, 86 (2012)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 52(4), 425 (2014)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Ben Amara MEA, Ben Nasrallah S, Int. J. Hydrog. Energy, 40(2), 1333 (2015)
Bozorgnezhad A, Shams M, Kanani H, Hasherninasab M, Ahmadi G, Int. J. Hydrog. Energy, 41(42), 19164 (2016)
Zhu X, Liao Q, Sui PC, Djilali N, J. Power Sources, 195(3), 801 (2010)
He GL, Yamazaki Y, Abudula A, J. Power Sources, 195(6), 1561 (2010)
Wen D, Qi H, Ma L, Lu C, LiKey G, Precision Engineering, 44, 192 (2016)
Roshandel R, Arbabi F, Moghaddam GK, Renew. Energy, 41, 86 (2012)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 52(4), 425 (2014)