Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2017
Accepted February 13, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성
Electrochemical Characteristics of PFO pitch Anode prepared by Chemical Activation for Lithium Ion Battery
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, June 2017, 55(3), 307-312(6), 10.9713/kcer.2017.55.3.307 Epub 2 June 2017
Download PDF
Abstract
본 연구에서는 PFO (pyrolyzed fuel oil)를 이용해 탄소 전구체(피치)를 얻은 후 KOH와 K2CO3를 이한 화학적 활성화를 통해 표면 개질한 카본의 전기화학적 특성을 분석하였다. 탄소 전구체는 3903, 4001, 4002의 세종류를 사용하였으며, 각 각 PFO를 390 °C 3 시간, 400 °C 1시간, 400 °C 2 시간 열처리 하여 제조하였다. 또한 학적 활성화 실험은 활성 촉매의 종류, 교반시간 등을 변화시키면서 비표면적 및 기공크기 등의 물성이 전기화학적 성에 미치는 효과를 조사 하였다. 제조된 표면개질 PFO 피치의 물리적 특성은 BET, FE-SEM 등을 통해 분석되었으, 음극 소재로서의 전기 화학적 성능은 충·방전, 순환전압전류, 임피던스, 속도 테스트를 통해 조사되었다. 화학적 성화법을 이용해 제조한 카본의 평균 기공크기는 22 nm, 비표면적은 3.12 m2/g의 결과를 얻었다. 세 가지 개질된 유계 피치를 음극소재로 사용하여 조사된 전기화학적 특성은 4001 피치가 가장 우수한 것으로 나타났으며, 이 때 표개질 조건은 KOH를 사용하여 2시간 교반 후 화학적 활성화법에 의하여 열처리 하였다. KOH를 이용한 표면개질 PFO 피치를 사용해 제조한 전지의 초기 용량은 318 mAh/g, 초기효율은 80%로 우수한 결과를 보였으며, 2C/0.1C 도 테스트 특성은 92%로 높은 특성을 보였다.
In this study, the electrochemical performance of surface modified carbon using the PFO (pyrolyzed fuel oil) was investigated by chemical activation with KOH and K2CO3. PFO was heat treated at 390~400 °C for 1~3h to prepared the pitch. Three carbon precursors (pitch) prepared by the thermal reaction were 3903 (at 390 °C for 3h), 4001 (at 400 °C for 1h) and 4002 (at 400 °C for 2h). Also, the effect of chemical activation catalysts and mixing time on the development of porosity during carbonization was investigated. The prepared carbon was analyzed by BET and FE-SEM. It was shown that chemical activation with KOH could be successfully used to develop carbon with specific surface area (3.12 m2/g) and mean pore size (22 nm). The electrochemical characteristics of modified carbon as the anode were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4002) modified by KOH has better initial capacity (318 mAh/g) than that of other pitch coin cells. Also, this prepared carbon anode appeared a high initial efficiency of 80% and the retention rate capability of 2C/0.1 C was 92%. It is found that modified carbon anode showed improved cycling and rate capacity performance.
Keywords
References
Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16 (2016)
Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D, J. Mater. Chem., 22(1), 93 (2012)
Jeong JH, Jung DW, Kong BS, Shin CM, Oh ES, Korean J. Chem. Eng., 28(11), 2202 (2011)
Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C, Bioresour. Technol., 111, 185 (2012)
He X, Zhao N, Qiu J, Xiao N, Yu M, Yu C, Zhang X, Zheng M, J. Mater. Chem., 1(33), 9440 (2013)
Chen YM, Liu C, Sun XX, Ye H, Cheung CS, Zhou LM, J. Power Sources, 275, 26 (2015)
Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y, Energy & Environmental Science, 6(8), 2497 (2013)
Zhu Y, Xiang X, Liu E, Wu Y, Xie H, Wu Z, Tian Y, Ionics, 19(3), 409 (2013)
Hayashi JI, Uchibayashi M, Horikawa T, Muroyama K, Gomes VG, Carbon, 40(15), 2747 (2002)
Moon SY, Lee BH, Lim YS, Carbon letters, 8(1), 30 (2007)
Hayashi JI, Kazehaya A, Muroyama K, Watkinson AP, Carbon, 38(13), 1873 (2000)
Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S, J. Power Sources, 284, 258 (2015)
Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH, Electrochim. Acta, 55(12), 3909 (2010)
Kim KH, Park MS, Jung MJ, Lee YS, Appl. Chem. Eng., 26(5), 298 (2015)
Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M, Sci. Rep., 5, 14575 (2015)
Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D, J. Mater. Chem., 22(1), 93 (2012)
Jeong JH, Jung DW, Kong BS, Shin CM, Oh ES, Korean J. Chem. Eng., 28(11), 2202 (2011)
Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C, Bioresour. Technol., 111, 185 (2012)
He X, Zhao N, Qiu J, Xiao N, Yu M, Yu C, Zhang X, Zheng M, J. Mater. Chem., 1(33), 9440 (2013)
Chen YM, Liu C, Sun XX, Ye H, Cheung CS, Zhou LM, J. Power Sources, 275, 26 (2015)
Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y, Energy & Environmental Science, 6(8), 2497 (2013)
Zhu Y, Xiang X, Liu E, Wu Y, Xie H, Wu Z, Tian Y, Ionics, 19(3), 409 (2013)
Hayashi JI, Uchibayashi M, Horikawa T, Muroyama K, Gomes VG, Carbon, 40(15), 2747 (2002)
Moon SY, Lee BH, Lim YS, Carbon letters, 8(1), 30 (2007)
Hayashi JI, Kazehaya A, Muroyama K, Watkinson AP, Carbon, 38(13), 1873 (2000)
Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S, J. Power Sources, 284, 258 (2015)
Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH, Electrochim. Acta, 55(12), 3909 (2010)
Kim KH, Park MS, Jung MJ, Lee YS, Appl. Chem. Eng., 26(5), 298 (2015)
Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M, Sci. Rep., 5, 14575 (2015)