Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 6, 2016
Accepted February 13, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가
Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization
인천대학교 에너지화학공학과, 22012 인천광역시 연수구 아카데미로 119
Department of Energy and Chemical Engineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Korea
Korean Chemical Engineering Research, June 2017, 55(3), 332-340(9), 10.9713/kcer.2017.55.3.332 Epub 2 June 2017
Download PDF
Abstract
본 연구에서는 다목적 최적화 기법을 이용하여 다양한 신재생에너지 자원 기반 통합 에너지 공급 시템을 설계 및 평가 한다. 본 연구에서는 에너지 공급 시스템의 주요 구성요소로써 태양광 모듈, 풍력터빈 및 화석연료 기반 발전장치 등 에너지 생산 기술을 비롯하여 배터리와 인버터 등의 전력 에너지 저장 및 변환 장치 등도 포함한다. 특히, 6개의 한국 대표 지역을 선별하여 각 지역의 에너지 요구량 및 실제 신재생 에너지 자원 데이터를 기반으로 최적의 독립 통합 에너지 공급 시스템을 설계하였으며, 총 소요비용, 단위에너지비용 및 생애주기 이산화탄소 배출분석 등, 다양한 지표를 이용하여 시스템의 경제성 및 환경성을 분석한다. 특히 다목적최적화 기법을 이용하여 최소비용과 최소 이산화탄소 배출 등 두 목적함수를 동시에 만족하는 파레토 솔루션을 규명함으로써 신재생 자원 기반 립 에너지 공급시스템 설계의 가능성 및 효과를 정량적으로 분석하였다. 분석 결과, 신재생에너지 자원이 좋은 지역 수록 시스템 구축 비용 증가에 따른 이산화탄소 절감 효과가 높은 것으로 나타났다. 또한, 신재생에너지 자원 기반 너지 공급 시스템의 전력 단가는 현재 기존 단가보다 평균 0.35~0.46 $/kWh높게 나타났으며, 이산화탄소 배출량의 우 기존 배출량 보다 470~490 gCO2/kWh정도의 저감효과를 보임을 분석하였다.
This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum CO2 emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce CO2 emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of CO2 (LCECO2) can be reduced up to 470 gCO2/kWh from 490 gCO2/kWh of the conventional systems.
Keywords
References
Choe U, Song K, The World of Electricity, 55(8), 38 (2006)
Cho Y, World Peace, 5(1), 2 (2008)
Oh J, “Results of the 2015 Global Climate Change Results in Paris,” Korea energy economic institute (2015).
Dufo-Lopez R, Bernal-Agustin JL, Yusta-Loyo JM, Dominguez-Navarro JA, Ramirez-Rosado IJ, Lujano J, Aso I, Appl. Energy, 88(11), 4033 (2011)
Dufo-Lopez R, Bernal-Agustin JL, Sol. Energy, 79(1), 33 (2005)
Bernal J, Lopez R, Renew. Sust. Energ. Rev., 13, 2111 (2009)
Santarelli M, Cali M, Macagno S, Int. J. Hydrog. Energy, 29(15), 1571 (2004)
Asarari A, Ghasemi A, Hossein J, Renew. Sust. Energ. Rev., 16, 3123 (2012)
Kim M, Kim J, Korean Chem. Eng. Res., 53(2), 156 (2015)
Kim K, Kim J, Korean Chem. Eng. Res., 54(4), 470 (2016)
HOGA, “Hybrid Optimization by Genetic Algorithms software, http://www.unizar.es/rdufo”.
KEPCO, “Korea Electric Power Corporation, www.kepco.co.kr”.
KOSIS, “Korean Statistical Information Service, http://kosis.kr/ statHtml/statHtml.do?orgId=101&tblId=DT_1JC1001&conn_- path=I3”.
KOSIS, “Korean Statistical Information Service, http://kosis.kr/ statHtml/statHtml.do?orgId=310&tblId=DT_3664N_1&conn_- path=I3”.
NASA Atmospheric Science Data Center .
Korea Electric Power Corporation, “Statistics of Electric Power in Korea,” KEPCO Report: No. 85(2015).
Cho S, Kim J, Energy, 85, 317 (2015)
Korea Hydro & Nuclear Power Co. Ltd, “2008 Nuclear Power White Paper,” (2008).
Kim J, Moon L, Hydrogen Energy, 33, 5887 (2008)
Cho Y, World Peace, 5(1), 2 (2008)
Oh J, “Results of the 2015 Global Climate Change Results in Paris,” Korea energy economic institute (2015).
Dufo-Lopez R, Bernal-Agustin JL, Yusta-Loyo JM, Dominguez-Navarro JA, Ramirez-Rosado IJ, Lujano J, Aso I, Appl. Energy, 88(11), 4033 (2011)
Dufo-Lopez R, Bernal-Agustin JL, Sol. Energy, 79(1), 33 (2005)
Bernal J, Lopez R, Renew. Sust. Energ. Rev., 13, 2111 (2009)
Santarelli M, Cali M, Macagno S, Int. J. Hydrog. Energy, 29(15), 1571 (2004)
Asarari A, Ghasemi A, Hossein J, Renew. Sust. Energ. Rev., 16, 3123 (2012)
Kim M, Kim J, Korean Chem. Eng. Res., 53(2), 156 (2015)
Kim K, Kim J, Korean Chem. Eng. Res., 54(4), 470 (2016)
HOGA, “Hybrid Optimization by Genetic Algorithms software, http://www.unizar.es/rdufo”.
KEPCO, “Korea Electric Power Corporation, www.kepco.co.kr”.
KOSIS, “Korean Statistical Information Service, http://kosis.kr/ statHtml/statHtml.do?orgId=101&tblId=DT_1JC1001&conn_- path=I3”.
KOSIS, “Korean Statistical Information Service, http://kosis.kr/ statHtml/statHtml.do?orgId=310&tblId=DT_3664N_1&conn_- path=I3”.
NASA Atmospheric Science Data Center .
Korea Electric Power Corporation, “Statistics of Electric Power in Korea,” KEPCO Report: No. 85(2015).
Cho S, Kim J, Energy, 85, 317 (2015)
Korea Hydro & Nuclear Power Co. Ltd, “2008 Nuclear Power White Paper,” (2008).
Kim J, Moon L, Hydrogen Energy, 33, 5887 (2008)