Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 5, 2016
Accepted January 31, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성
Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdea-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
smjeong@chungbuk.ac.kr
Korean Chemical Engineering Research, June 2017, 55(3), 379-384(6), 10.9713/kcer.2017.55.3.379 Epub 2 June 2017
Download PDF
Abstract
LiCl 용융염에서 희토류 산화물의 환원율을 높이기 위해 NiO와 혼합하여 전해환원을 실시하였다. Cyclic voltammetry (CV) 실험을 통해 LiCl 용융염 내에서 혼합산화물의 전기화학적 환원거동을 조사하였다. 혼합산화물로 제작된 환원전 극과 그라파이트 산화전극 사이에 일정한 작동전압을 인가하여 이론전하량 대비 다양한 전하량을 공 한 후 중간생성 물의 결정구조를 XRD를 이용하여 분석하였다. NiO 산화물을 첨가함으로써 전기전도성이 좋은 Ni 금속 주위로 희토류 산화물이 환원되어 RE-Ni 합금형태의 금속으로 완전히 전환되었으며, 합금을 형성하는 반응 메커 즘을 제시하였다.
An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.
References
Herrmann S, Li S, Simpson MF, Nucl. Technol., 44(3), 361 (2007)
Herrmann S, Li S, Nucl. Technol., 171, 247 (2010)
Sakamura Y, Kurata M, Inoue T, J. Electrochem. Soc., 153(3), D31 (2006)
Sakamura Y, Omori T, Inoue T, Nucl. Technol., 162, 169 (2008)
Inoue T, Koyama T, Arai Y, Energy Procedia., 7, 405 (2011)
Goff KM, Wass JC, Marsden KC, Teske GM, Nucl. Eng. Technol, 43, 335 (2011)
Choi EY, Lee JW, Park JJ, Hur JM, Kim JK, Jung KY, Jeong SM, Chem. Eng. J., 207, 514 (2012)
Park BH, Lee CS, Korean Chem. Eng. Res., 50(4), 696 (2012)
Choi EY, Hong SS, Park W, Im HS, Oh SC, Won CY, Cha JS, Hur JM, Korean Chem. Eng. Res., 52(3), 279 (2014)
Zhang Y, Yin H, Zhang S, Tang D, Yuan Z, Yan T, Zheng W, Wang D, J. Rare Earths, 30(9), 923 (2012)
Park BH, Hur JM, Lee HS, J. Korean Radioactive Waste Society, 8(1), 19 (2010)
Park SW, Seo CS, Kang DS, Kwon SG, Park SW, J. Korean Radioactive Waste Society, 3(2), 105 (2005)
Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 54(26), 6335 (2009)
Joseph TB, Sanil N, Shakila L, Mohandas KS, Nagarajan K, Electrochim. Acta, 139, 394 (2014)
Kang YH, Hwang SC, Lee HS, Kim EH, Park SW, Lee JH, J. Mater. Process. Technol., 209(11), 5008 (2009)
Ryu HY, Jeong SM, Kang YC, Kim JG, Asian Journal of Chemisty, 25(12), 7019 (2013)
Hur JM, Kim TJ, Choi IK, Do JB, Hong SS, Seo CS, Nucl. Technol., 162, 192 (2008)
Jeong SM, Shin HS, Hong SS, Hur JM, Do JB, Lee HS, Electrochim. Acta, 55(5), 1749 (2010)
Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek S, Simpson MF, Jeong SM, Electrochem. Commun., 72, 23 (2016)
Zhao B, Wang L, Dai L, Cui G, Zhou H, Kumar RV, J. Alloy. Compd., 468(1), 379 (2009)
Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259 (2015)
Hayashi H, Minato K, J. Phys. Chem. Solids, 66, 422 (2005)
Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145 (2015)
Herrmann S, Li S, Nucl. Technol., 171, 247 (2010)
Sakamura Y, Kurata M, Inoue T, J. Electrochem. Soc., 153(3), D31 (2006)
Sakamura Y, Omori T, Inoue T, Nucl. Technol., 162, 169 (2008)
Inoue T, Koyama T, Arai Y, Energy Procedia., 7, 405 (2011)
Goff KM, Wass JC, Marsden KC, Teske GM, Nucl. Eng. Technol, 43, 335 (2011)
Choi EY, Lee JW, Park JJ, Hur JM, Kim JK, Jung KY, Jeong SM, Chem. Eng. J., 207, 514 (2012)
Park BH, Lee CS, Korean Chem. Eng. Res., 50(4), 696 (2012)
Choi EY, Hong SS, Park W, Im HS, Oh SC, Won CY, Cha JS, Hur JM, Korean Chem. Eng. Res., 52(3), 279 (2014)
Zhang Y, Yin H, Zhang S, Tang D, Yuan Z, Yan T, Zheng W, Wang D, J. Rare Earths, 30(9), 923 (2012)
Park BH, Hur JM, Lee HS, J. Korean Radioactive Waste Society, 8(1), 19 (2010)
Park SW, Seo CS, Kang DS, Kwon SG, Park SW, J. Korean Radioactive Waste Society, 3(2), 105 (2005)
Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 54(26), 6335 (2009)
Joseph TB, Sanil N, Shakila L, Mohandas KS, Nagarajan K, Electrochim. Acta, 139, 394 (2014)
Kang YH, Hwang SC, Lee HS, Kim EH, Park SW, Lee JH, J. Mater. Process. Technol., 209(11), 5008 (2009)
Ryu HY, Jeong SM, Kang YC, Kim JG, Asian Journal of Chemisty, 25(12), 7019 (2013)
Hur JM, Kim TJ, Choi IK, Do JB, Hong SS, Seo CS, Nucl. Technol., 162, 192 (2008)
Jeong SM, Shin HS, Hong SS, Hur JM, Do JB, Lee HS, Electrochim. Acta, 55(5), 1749 (2010)
Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek S, Simpson MF, Jeong SM, Electrochem. Commun., 72, 23 (2016)
Zhao B, Wang L, Dai L, Cui G, Zhou H, Kumar RV, J. Alloy. Compd., 468(1), 379 (2009)
Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259 (2015)
Hayashi H, Minato K, J. Phys. Chem. Solids, 66, 422 (2005)
Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145 (2015)