Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 9, 2017
Accepted February 13, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성
Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
nabk@chungbuk.ac.kr
Korean Chemical Engineering Research, June 2017, 55(3), 430-435(6), 10.9713/kcer.2017.55.3.430 Epub 2 June 2017
Download PDF
Abstract
Li4Ti5O12 (LTO)는 리튬이차전지용 음극활물질로써 충방전에 따른 체적변화가 매우 적고, 삽입과 탈리 반응에 따른 높은 가역성 때문에 수명 특성이 좋다는 장점을 가지고 있다. 본 연구에서는 LTO의 단점인 낮은 전기 도도를 보완하 고자 전도성이 좋은 탄소계열 소재인 그래핀과 CNT를 첨가 하였다. LTO입자가 나노 크기이므로, 그 핀이 LTO표면에 위치하여 전도성 향상을 시키기 어렵다고 생각했다. 따라서 추가로 CNT를 첨가시켜 LTO입자와 그래핀 사이에 전도성 네트워크를 형성하여, 그래핀만 첨가하였을 때 보다 전도성이 향상되었다. 또한 탄소물질의 첨가 시 을 LTO합성 전 후로 나누어, 각각의 용량 및 수명특성의 효율을 비교해 보았다.
Li4Ti5O12 (LTO) is an anode material for lithium ion battery, and the cycle performance is very good. The volume change of LTO during insertion and deinsertion of lithium ion is very small, so the cyclibility is very high. In this experiment graphene and CNT was added to increase the low conductivity of LTO which is the weak point of LTO. When graphene was located on the surface of LTO the conductivity did not increase so much because of the nano size LTO. Addition of CNT increased the conductivity because of the formation of the conducting network between LTO particle and the graphene. Carbon material addition was changed before and after the LTO manufacturing, and the capacity and the cyclibility was compared.
References
Yuan T, Cai R, Wang K, Ran R, Liu S, Shao Z, Ceram. Int., 35, 1757 (2009)
Hong SC, Hong HP, Cho BW, Na BK, Korean J. Chem. Eng., 27(1), 91 (2010)
Kim SH, Park H, Jee SH, Ahn HS, Kim DJ, Choi JW, Yoon SJ, Yoon YS, Korean J. Chem. Eng., 26(2), 485 (2009)
Jhan YR, Duh JG, J. Power Sources, 198, 294 (2012)
Huang SH, Wen ZY, Zhu XJ, Lin ZX, J. Power Sources, 165(1), 408 (2007)
Huang SH, Wen ZY, Zhu XJ, Lin ZX, J. Electrochem. Soc., 152(1), A186 (2005)
Huang SH, Wen ZY, Zhang JC, Gu ZH, Xu XH, Solid State Ion., 177(9-10), 851 (2006)
Yu HY, Zhang XF, Jalbout AF, Yan XD, Pan XM, Xie HM, Wang RS, Electrochim. Acta, 53(12), 4200 (2008)
Wang GX, Xu JJ, Wen M, Cai R, Ran R, Shao ZP, Solid State Ion., 179(21-26), 946 (2008)
Yao XL, Xie S, Nian HQ, Chen CH, J. Alloy. Compd., 465, 375 (2008)
Li X, Qu MZ, Huai YJ, Yu ZL, Electrochim. Acta, 55(8), 2978 (2010)
Nakahara K, Nakajima R, Matsushima T, Majima H, J. Power Sources, 117(1-2), 131 (2003)
Zhu N, Liu W, Xue MQ, Xie ZA, Zhao D, Zhang MN, Chen JT, Cao TB, Electrochim. Acta, 55(20), 5813 (2010)
Guo P, Song HH, Chen XH, Electrochem. Commun., 11, 1320 (2009)
Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J, ACS Nano, 3, 907 (2009)
Shi Y, Wen L, Li F, Cheng HM, J. Power Sources, 196(20), 8610 (2011)
Joo E, Kim J, Hosono E, Zhou H, Kudo T, Nano Lett., 8, 2277 (2008)
Park HK, J. Korean Electrochem. Soc., 11(3), 197 (2008)
Hong SC, Hong HP, Cho BW, Na BK, Korean J. Chem. Eng., 27(1), 91 (2010)
Kim SH, Park H, Jee SH, Ahn HS, Kim DJ, Choi JW, Yoon SJ, Yoon YS, Korean J. Chem. Eng., 26(2), 485 (2009)
Jhan YR, Duh JG, J. Power Sources, 198, 294 (2012)
Huang SH, Wen ZY, Zhu XJ, Lin ZX, J. Power Sources, 165(1), 408 (2007)
Huang SH, Wen ZY, Zhu XJ, Lin ZX, J. Electrochem. Soc., 152(1), A186 (2005)
Huang SH, Wen ZY, Zhang JC, Gu ZH, Xu XH, Solid State Ion., 177(9-10), 851 (2006)
Yu HY, Zhang XF, Jalbout AF, Yan XD, Pan XM, Xie HM, Wang RS, Electrochim. Acta, 53(12), 4200 (2008)
Wang GX, Xu JJ, Wen M, Cai R, Ran R, Shao ZP, Solid State Ion., 179(21-26), 946 (2008)
Yao XL, Xie S, Nian HQ, Chen CH, J. Alloy. Compd., 465, 375 (2008)
Li X, Qu MZ, Huai YJ, Yu ZL, Electrochim. Acta, 55(8), 2978 (2010)
Nakahara K, Nakajima R, Matsushima T, Majima H, J. Power Sources, 117(1-2), 131 (2003)
Zhu N, Liu W, Xue MQ, Xie ZA, Zhao D, Zhang MN, Chen JT, Cao TB, Electrochim. Acta, 55(20), 5813 (2010)
Guo P, Song HH, Chen XH, Electrochem. Commun., 11, 1320 (2009)
Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J, ACS Nano, 3, 907 (2009)
Shi Y, Wen L, Li F, Cheng HM, J. Power Sources, 196(20), 8610 (2011)
Joo E, Kim J, Hosono E, Zhou H, Kudo T, Nano Lett., 8, 2277 (2008)
Park HK, J. Korean Electrochem. Soc., 11(3), 197 (2008)