ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 29, 2017
Accepted April 10, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul, 01897, Korea
hsohn@kw.ac.kr
Korean Chemical Engineering Research, August 2017, 55(4), 483-489(7), 10.9713/kcer.2017.55.4.483 Epub 4 August 2017
downloadDownload PDF

Abstract

The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (~80°C). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

References

Xiao Q, Sohn Z, Chen Z, Toso D, Mechlenburg M, Zhou ZH, Poirier E, Dailly A, Wang H, Wu Z, Cai M, Lu Y, Angew. Chem.-Int. Edit., 51, 10546 (2012)
Sohn H, Chen Z, Jung YS, Xiao Q, Cai M, Wang H, Lu Y, J. Mater. Chem., 1, 4539 (2013)
Jin EM, Lee GE, Na BK, Jeong SM, Korean Chem. Eng. Res., 55(2), 163 (2017)
Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541 (2011)
Ji X, Nazar LF, J. Mater. Chem., 20, 9821 (2010)
Manthiram A, Fu Y, Su YS, Acc. Chem. Res., 46, 1125 (2013)
Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ, J. Power Sources, 89(2), 219 (2000)
Chen S, Dai F, Gordin ML, Wang D, RSC Adv., 3, 3540 (2013)
Sohn H, Gordin ML, Regula M, Kim DH, Jung YS, Song JX, Wang DH, J. Power Sources, 302, 70 (2016)
Sohn H, Gordin ML, Xu T, Chen S, Lv D, Song J, Manivannan A, Wang D, ACS Appl, 6, 7596 (2014)
Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E, J. Electrochem. Soc., 135, 1045 (1988)
Mikhaylik YV, Akridge JR, J. Electrochem. Soc., 151(11), A1969 (2004)
Liang C, Dudney NJ, Howe JY, Chem. Mater., 21, 4724 (2009)
Lai C, Gao XP, Zhang B, Yan TY, Zhou Z, J. Phys. Chem., 113, 4712 (2009)
Zhang B, Qin X, Li GR, Gao XP, Energy Environ. Sci., 3, 1531 (2010)
Liang XA, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J, J. Power Sources, 196(7), 3655 (2011)
Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF, Angew. Chem.-Int. Edit., 51, 3591 (2012)
Xu T, Song J, GordiN ML, Sohn H, Yu Z, Chen S, Wang D, ACS Appl. Mater. Interfaces, 5, 11355 (2013)
Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT, J. Electrochem. Soc., 150(6), A800 (2003)
Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS, Nature, 448, 457 (2007)
Agostini M, Hassoun J, Sci. Rep., 5, 7591 (2015)
Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chem J, Ng SH, Chou SL, Liu HK, Carbon, 46, 229 (2008)
Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J, J. Mater. Chem., 21, 16603 (2011)
Sun XG, Wang X, Mayes RT, Dai S, ChemSusChem, 5, 2079 (2012)
Gordin ML, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D, ACS Appl. Mater. Interfaces, 6, 8006 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로