Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 13, 2017
Accepted June 14, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성
Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG
충북대학교 화학공학과
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, October 2017, 55(5), 593-599(7), 10.9713/kcer.2017.55.5.593 Epub 19 October 2017
Download PDF
Abstract
본 연구에서는 활성탄과 납 전구체를 사용하여 나노 Pb/AC 복합소재를 제조한 후, 울트라 전지용 음극소재의 전기 화학적 특성을 조사하였다. 나노 Pb/AC 복합소재는 활성탄에 나노 Pb 입자를 흡착시킨 후 감압 수세하여 제조하였다. 제조된 복합소재의 물리적 특성은 SEM, BET, EDS를 통해 분석하였으며, 1740 m2/g, 1.95 nm의 비표면적과 평균 기공크기를 얻었다. 울트라 전지의 음극은 납 극판에 나노 Pb/AC를 딥코팅하여 제조되었다. 울트라 전지는 이산화납을 사용한 양극과 나노 Pb/AC 복합소재 음극을 사용하였으며 전해액은 5 M의 황산용액(1.31 g/cm3)을 사용하였다. 전기화학적 성능은 충·방전, 순환전압전류, 임피던스, 사이클 테스트를 통해 조사되었다. 제조된 나노 Pb/AC를 이용한 울트라 배터리는 기존의 납 축전지와 AC를 코팅한 납 축전지보다 개선된 초기 용량과 사이클 특성을 보였다. 이러한 실험 결과로부터 나노 Pb/AC의 적절한 첨가가 수소발생 반응이 억제됨에 따라 용량 및 장기 사이클 안정성을 향상시킴을 알 수 있었다.
In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were 1740 m2/g and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using PbO2 (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M H2SO4 electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.
References
Karden E, Ploumen S, Fricke B, Miller T, Snyder K, J. Power Sources, 168(1), 2 (2007)
Lam LT, Louey R, J. Power Sources, 158(2), 1140 (2006)
Lam LT, Haigh NP, Phyland CG, Urban AJ, J. Power Sources, 133(1), 126 (2004)
Lam LT, Louey R, Haigh NP, Lim OV, Vella DG, Phyland CG, Vu LH, Furukawa J, Takada T, Monma D, Kano T, J. Power Sources, 174(1), 16 (2007)
Nakamura K, Shiomi M, Takahashi K, Tsubota M, J. Power Sources, 59(1-2), 153 (1996)
Kim IG, Oh SH, Kang HY, Korean Chem. Eng. Res., 30(2), 172 (1992)
Li L, Zhu XF, Yang DN, Gao LX, Liu JW, Kumar RV, Yang JK, J. Hazard. Mater., 203, 274 (2012)
Xiang JY, Ding P, Zhang H, Wu XZ, Chen J, Yang YS, J. Power Sources, 241, 150 (2013)
Hong B, Jiang LX, Xue HT, Liu FY, Jia M, Li J, Liu YX, J. Power Sources, 270, 332 (2014)
Zou XP, Kang ZX, Shu D, Liao YQ, Gong YB, He C, Hao JN, Zhong YY, Electrochim. Acta, 151, 89 (2015)
Cooper A, Furakawa J, Lam L, Kellaway M, J. Power Sources, 188(2), 642 (2009)
Zhao L, Chen B, Wang D, J. Power Sources, 231, 3438 (2013)
Lam LT, Louey R, J. Power Sources, 158(2), 1140 (2006)
Lam LT, Haigh NP, Phyland CG, Urban AJ, J. Power Sources, 133(1), 126 (2004)
Lam LT, Louey R, Haigh NP, Lim OV, Vella DG, Phyland CG, Vu LH, Furukawa J, Takada T, Monma D, Kano T, J. Power Sources, 174(1), 16 (2007)
Nakamura K, Shiomi M, Takahashi K, Tsubota M, J. Power Sources, 59(1-2), 153 (1996)
Kim IG, Oh SH, Kang HY, Korean Chem. Eng. Res., 30(2), 172 (1992)
Li L, Zhu XF, Yang DN, Gao LX, Liu JW, Kumar RV, Yang JK, J. Hazard. Mater., 203, 274 (2012)
Xiang JY, Ding P, Zhang H, Wu XZ, Chen J, Yang YS, J. Power Sources, 241, 150 (2013)
Hong B, Jiang LX, Xue HT, Liu FY, Jia M, Li J, Liu YX, J. Power Sources, 270, 332 (2014)
Zou XP, Kang ZX, Shu D, Liao YQ, Gong YB, He C, Hao JN, Zhong YY, Electrochim. Acta, 151, 89 (2015)
Cooper A, Furakawa J, Lam L, Kellaway M, J. Power Sources, 188(2), 642 (2009)
Zhao L, Chen B, Wang D, J. Power Sources, 231, 3438 (2013)