Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 16, 2017
Accepted June 30, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Ultrasonic Speed and Isentropic Compressibility of 2-propanol with Hydrocarbons at 298.15 and 308.15 K
Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India 1Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India
sanjeevmakin@gmail.com
Korean Chemical Engineering Research, October 2017, 55(5), 668-678(11), 10.9713/kcer.2017.55.5.668 Epub 19 October 2017
Download PDF
Abstract
Intermolecular interactions were studied for binary mixtures of 2-propanol + cyclohexane, n-hexane, benzene, toluene, o-, m- and p-xylenes by measuring ultrasonic speeds (u) over the entire range of composition at 298.15 K and 308.15 K. From these results the deviation in ultrasonic speed was calculated. These results were fitted to the Redlich-Kister equation to derive the binary coefficients along with standard deviations between the experimental and calculated data. Acoustic parameters such as excess isentropic compressibility (KsE), intermolecular free length (Lf) and available volume (Va) were also derived from ultrasonic speed data and Jacobson’s free length theory. The ultrasonic speed data were correlated by Nomoto’s relation, Van Dael’s mixing relation, impedance dependence relation, and Schaaff’s collision factor theory. Van Dael’s relation gives the best prediction of u in the binary mixtures containing aliphatic hydrocarbons. The ultrasonic speed data and isentropic compressibility were further analyzed in terms of Jacobson’s free length theory.
Keywords
References
Surisetty VR, Dalai AK, Kozinski J, Appl. Catal. A: Gen., 404(1-2), 1 (2011)
Veloo PS, Egolfopoulos FN, Combust. Flame, 158(3), 501 (2011)
Luque R, Menendez JA, Arenillas A, Cot J, Energy Environ. Sci., 5, 5481 (2012)
Chan QN, Bao YM, Kook S, Fuel, 130, 228 (2014)
Hwang IC, Park SJ, Han KJ, In SJ, J. Ind. Eng. Chem., 18(1), 499 (2012)
Kumar S, Cho JH, Park J, Moon I, Renew. Sust. Energ. Rev., 22, 46 (2013)
Mejia A, Segura H, Cartes M, Fuel, 116, 183 (2014)
Bhardwaj U, Maken S, Singh KC, J. Chem. Thermodyn., 28(10), 1173 (1996)
Maken S, Park JJ, Bhardwaj U, Singh KC, Park JW, Han SD, Deshwal BR, J. Chem. Thermodyn., 36(4), 309 (2004)
Singh KC, Kalra KC, Maken S, Gupta V, Thermochim. Acta, 275(1), 51 (1996)
Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 123(1-2), 271 (1996)
Barta L, Kooner ZS, Hepler LG, Roux-Desgranges G, Grolier JPE, Can. J. Chem., 67, 1225 (1989)
Aminabhavi TM, Patil VB, Aralaguppi MI, Ortego JD, Hansen KC, J. Chem. Eng. Data, 41(3), 526 (1996)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
Gahlyan S, Verma S, Rani M, Maken S, Korean Chem. Eng. Res., 55(4), 520 (2017)
Park SJ, Han KJ, Gmehling J, Fluid Phase Equilib., 200(2), 399 (2002)
Gahlyan S, Rani M, Maken S, Kwonc H, Tak K, Moon I, J. Ind. Eng. Chem., 23, 299 (2015)
Iloukhani H, Samiey B, Moghaddasi MA, J. Chem. Thermodyn., 38(2), 190 (2006)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 219, 1107 (2016)
Gonzalez B, Dominguez A, Tojo J, J. Chem. Thermodyn., 35(6), 939 (2003)
George J, Sastry NV, J. Chem. Eng. Data, 48(4), 977 (2003)
Aralaguppi MI, Jadar CV, Aminabhavi TM, J. Chem. Eng. Data, 44, 446 (1999)
Ali A, Nain AK, Chand D, Ahmad R, J. Mol. Liq., 128, 32 (2006)
Rani M, Gahlyan S, Gaur A, Maken S, Chinese J. Chem. Eng., 23, 689 (2015)
Kumar S, Maken A, Agarwal S, Maken S, J. Mol. Liq., 155, 115 (2010)
Weissenberger A, Physical Methods of Organic Chemistry, 3rd ed., Interscience, New York(1959).
Paramo R, Zouine M, Casanova C, J. Chem. Eng. Data, 47(3), 441 (2002)
Sharma VK, Dua R, Dimple, Jangra SK, Fluid Phase Equilib., 378, 83 (2014)
Bolotnikov MF, Neruchev YA, Melikhov YF, Verveyko VN, Verveyko MV, J. Chem. Eng. Data, 50(3), 1095 (2005)
Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
Nomoto O, J. Phy. Soc. Japan, 13, 1528 (1958)
Van Deal W, Thermodynamic Properties and Velocity of Sound, Butterworth, London(1975).
Yu CH, Tsai FN, J. Chem. Eng. Data, 39(3), 441 (1994)
Schaaffs W, Acoustica, 33, 272 (1975)
Schaaffs W, Molekularakustik, Springer-Verlag (1963).
Nutsch-Kuhnkies R, Acoustica, 15, 383 (1965)
Savaroglu G, Aral E, Fluid Phase Equilib., 215(2), 253 (2004)
Dubey GP, Sharma M, Phys. Chem. Liq., 46, 610 (2008)
Jacobson B, Acta Chem. Scand., 6, 1485 (1952)
Jacobson B, Acta Chem. Scand., 9, 997 (1955)
Weast RC, Handbook of Chemistry and Physics CRC, Boca Raton, FL(1986).
Veloo PS, Egolfopoulos FN, Combust. Flame, 158(3), 501 (2011)
Luque R, Menendez JA, Arenillas A, Cot J, Energy Environ. Sci., 5, 5481 (2012)
Chan QN, Bao YM, Kook S, Fuel, 130, 228 (2014)
Hwang IC, Park SJ, Han KJ, In SJ, J. Ind. Eng. Chem., 18(1), 499 (2012)
Kumar S, Cho JH, Park J, Moon I, Renew. Sust. Energ. Rev., 22, 46 (2013)
Mejia A, Segura H, Cartes M, Fuel, 116, 183 (2014)
Bhardwaj U, Maken S, Singh KC, J. Chem. Thermodyn., 28(10), 1173 (1996)
Maken S, Park JJ, Bhardwaj U, Singh KC, Park JW, Han SD, Deshwal BR, J. Chem. Thermodyn., 36(4), 309 (2004)
Singh KC, Kalra KC, Maken S, Gupta V, Thermochim. Acta, 275(1), 51 (1996)
Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 123(1-2), 271 (1996)
Barta L, Kooner ZS, Hepler LG, Roux-Desgranges G, Grolier JPE, Can. J. Chem., 67, 1225 (1989)
Aminabhavi TM, Patil VB, Aralaguppi MI, Ortego JD, Hansen KC, J. Chem. Eng. Data, 41(3), 526 (1996)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
Gahlyan S, Verma S, Rani M, Maken S, Korean Chem. Eng. Res., 55(4), 520 (2017)
Park SJ, Han KJ, Gmehling J, Fluid Phase Equilib., 200(2), 399 (2002)
Gahlyan S, Rani M, Maken S, Kwonc H, Tak K, Moon I, J. Ind. Eng. Chem., 23, 299 (2015)
Iloukhani H, Samiey B, Moghaddasi MA, J. Chem. Thermodyn., 38(2), 190 (2006)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 219, 1107 (2016)
Gonzalez B, Dominguez A, Tojo J, J. Chem. Thermodyn., 35(6), 939 (2003)
George J, Sastry NV, J. Chem. Eng. Data, 48(4), 977 (2003)
Aralaguppi MI, Jadar CV, Aminabhavi TM, J. Chem. Eng. Data, 44, 446 (1999)
Ali A, Nain AK, Chand D, Ahmad R, J. Mol. Liq., 128, 32 (2006)
Rani M, Gahlyan S, Gaur A, Maken S, Chinese J. Chem. Eng., 23, 689 (2015)
Kumar S, Maken A, Agarwal S, Maken S, J. Mol. Liq., 155, 115 (2010)
Weissenberger A, Physical Methods of Organic Chemistry, 3rd ed., Interscience, New York(1959).
Paramo R, Zouine M, Casanova C, J. Chem. Eng. Data, 47(3), 441 (2002)
Sharma VK, Dua R, Dimple, Jangra SK, Fluid Phase Equilib., 378, 83 (2014)
Bolotnikov MF, Neruchev YA, Melikhov YF, Verveyko VN, Verveyko MV, J. Chem. Eng. Data, 50(3), 1095 (2005)
Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
Nomoto O, J. Phy. Soc. Japan, 13, 1528 (1958)
Van Deal W, Thermodynamic Properties and Velocity of Sound, Butterworth, London(1975).
Yu CH, Tsai FN, J. Chem. Eng. Data, 39(3), 441 (1994)
Schaaffs W, Acoustica, 33, 272 (1975)
Schaaffs W, Molekularakustik, Springer-Verlag (1963).
Nutsch-Kuhnkies R, Acoustica, 15, 383 (1965)
Savaroglu G, Aral E, Fluid Phase Equilib., 215(2), 253 (2004)
Dubey GP, Sharma M, Phys. Chem. Liq., 46, 610 (2008)
Jacobson B, Acta Chem. Scand., 6, 1485 (1952)
Jacobson B, Acta Chem. Scand., 9, 997 (1955)
Weast RC, Handbook of Chemistry and Physics CRC, Boca Raton, FL(1986).