ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 1, 2017
Accepted August 4, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane

공주대학교 화학공학부, 31080 충청남도 천안시 서북구 천안대로 1223-24
Department of Chemical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan, Chungnam, 31080, Korea
Korean Chemical Engineering Research, December 2017, 55(6), 807-815(9), 10.9713/kcer.2017.55.6.807 Epub 5 December 2017
downloadDownload PDF

Abstract

본 연구에서는 회전증발에서 건조 온도에 따른 파클리탁셀의 잔류 펜탄 제거 효율에 대해 조사하였으며 건조 공정에 대한 동역학 및 열역학적 해석을 수행하였다. 모든 온도(25, 30, 35, 40, 45 °C)에서 건조 초기에 많은 양의 잔류용매가 제거되었으며 건조 온도가 증가할수록 건조 효율은 증가하였다. 동역학적 해석을 위해 실험데이터 값을 다섯 종류의 건조 모델식(Newton, Page, Modified Page, Henderson and Pabis, Geometric)에 적용하였으며, 이 중 Henderson and Pabis 모델이 큰 결정계수 값과 작은 평균평방근편차 RMSD 값을 가져 가장 적합함을 확인하였다. 또한 열역학적 해석을 수행한 결과, 회전증발에서의 활성화 에너지 Ea는 4.9815 kJ/mol이었으며, 표준 Gibbs 자유에너지 변화(ΔG0)는 음수 값인 반면 표준 엔탈피 변화(ΔH0)와 표준 엔트로피 변화(ΔS0)는 양수 값을 나타내어 건조 공정이 자발적 흡열반응이며 비가역적으로 수행됨을 알 수 있었다.
This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and 45 °C), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination (r2) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy (Ea) was 4.9815 kJ/mol and the standard Gibbs free energy change (ΔG0) was negative, whereas the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

References

Wani MC, Taylor H, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93(9), 2325 (1971)
Kim JH, Korean J. Biotechnol. Bioeng., 21(1), 1 (2006)
Ha GS, Kim JH, Korean Chem. Eng. Res., 54(2), 229 (2016)
Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38(2), 188 (2009)
Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12(7), 1003 (1995)
Baloglu E, Kingston DGI, J. Nat. Prod., 62(7), 1003 (1999)
Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol
Lee CG, Kim JH, Korean Chem. Eng. Res., 54(1), 89 (2016)
Hancock BC, Parks M, Pharm. Res., 17(4), 397 (2000)
Hancock BC, Zografi G, J. Pharm. Sci., 86, 1 (1997)
Khadka P, Ro JE, Kim HM, Kim IS, Kim JT, Kim HI, Cho JM, Yun GA, Lee JH, J. Pharm. Sci., 9(6), 304 (2014)
Pyo SH, Cho JS, Choi HJ, Han BH, Dry. Technol., 25(10), 1759 (2007)
Karunanithi AT, Acquah C, Achenie LEK, Sithambaram S, Suib SL, Comput. Chem. Eng., 33(5), 1014 (2009)
Liggins RT, Hunter WL, Burt HM, J. Pharm. Sci., 86(12), 1458 (1997)
Lee JH, Gi US, Kim JH, Kim Y, Kim SH, Oh HM, Bull. Korean Chem. Soc., 22(8), 925 (2001)
International Conference on Harmonisation, Federal Register, 62, 67377-67388 (1997).
Kim JH, Park HB, Gi US, Kang IS, Choi HK, Hong SS, Korean J. Biotechnol. Bioeng., 16(3), 233 (2001)
Lee JY, Kim JH, Process Biochem., 48(3), 545 (2013)
Drouzas AE, Tsami E, Saravacos GD, J. Food Eng., 39(2), 117 (1999)
Ha GS, Kim JH, Process Biochem., 51(10), 1664 (2016)
Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816 (2004)
Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297 (2008)
Lee JY, Kim JH, Korean J. Microbiol. Biotechnol., 40(2), 169 (2012)
Lee CG, Kim JH, Process Biochem., 50(6), 1031 (2015)
Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985 (2004)
Diamante LM, Munro PA, Sol. Eng., 51(4), 271 (1993)
Aregbesola A, Ogunsina BS, Sofolahan AE, Chime NN, Niger Food J., 33(1), 83 (2015)
Page GE, Purdue University, West Lafayette, Indiana, USA(1949).
White GM, Loewer TC, Ross IJ, Trans. ASAE, 23(1), 0224 (1978)
Henderson SM, Pabis S, J. Agric. Eng. Res., 6(3), 169 (1961)
Chinweuba DC, Nwakuba RN, Okafor VC, Am. J. Food. Sci. Nutr. Res., 3(1), 1 (2016)
Prasad BE, Pandey KK, Eur. J. Wood Prod., 70, 353 (2012)
Ozkan IA, Akbudak B, Akbudak N, J. Food Eng., 78(2), 577 (2007)
Lee H, Han CS, Chungbuk National University, Cheongju, Korea (2009).
Niladevi KM, Sukumaran RK, Jacob N, Anisha GS, Prema P, Microbiol. Res., 164(1), 105 (2009)
Kim HS, Kim JH, Process Biochem., 56, 163 (2017)
Babalis SJ, Belessiotis VG, J. Food Eng., 63(3), 449 (2004)
Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로