Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 6, 2017
Accepted November 21, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
염색산업단지 종합폐수처리용 재순환 통합시스템
Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex
대구대학교 화학공학과, 산업 및 환경폐가스 연구소, 38453 경상북도 경산시 진량읍 대구대로 201
Department of Chemical Engineering, Daegu University and Research Institute for Industrial and Environmental Waste Air Treatment, 201, Daegudae-ro, Jillyang-eup, Gyeongsan, Gyeongbuk, 38453, Korea
khlim@daegu.ac.kr
Korean Chemical Engineering Research, December 2017, 55(6), 837-845(9), 10.9713/kcer.2017.55.6.837 Epub 5 December 2017
Download PDF
Abstract
D염색공단의 폴리에스테르 알카리 감량폐수 및 호발폐수가 혼합된 실제 종합염색폐수를 처리하기 위하여 D염색공단의 종합폐수처리장 반송슬러지를 고정한 폐타이어담체를 충전한 재순환 유동상 바이오필터와 소성된 TiO2 코팅-glass bead를 광촉매담체로 적용한 UV/광촉매반응기를 결합한 재순환 통합시스템을 구축하여 운전하였다. 그 결과로서 재순환 통합시스템의 총 CODcr 제거율과 총 색도 제거율 추이는 각각 약 81% 및 55% 정도를 유지하였다. 이러한 재순환 통합시스템의 총 CODcr 및 총 색도 제거율의 제고효과는 각각 최대 약 7% 및 3%로 평가되었다. 재순환 통합시스템의 유동상 바이오필터 및 광촉매반응공정은 총 제거율에 대한 상대기여도로서 각각 총 CODcr 제거율의 약 94% 및 6%를 처리하고, 총 색도 제거율의 약 86% 및 14%를 처리하였다. 이와 같이 재순환 통합시스템의 광촉매반응공정에 서는 총 제거율에 대한 색도 제거율의 상대기여도가 CODcr 제거율의 상대기여도보다 약 2.4배 정도 컸다. 따라서 본 연구의 재순환 통합시스템에서 광촉매반응공정은 CODcr 제거보다 아조결합과 같이 염료에서 색을 나타내는 화학결합을 깨는 역할에 더욱 효율성이 있었다. 또한 본 연구의 재순환 통합시스템에서 각 단위공정들의 CODcr 및 색도 제거율이, 재순환 통합시스템의 총 CODcr 및 색도 제거율에 미치는 영향에 대한 모델식과 대수적 상관관계를 구하고 분석하였다.
A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined TiO2 coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of CODcr and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency( RE(tot)) of CODcr and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total CODcr removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process’s contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of CODcr. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than CODcr. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of CODcr and colors, was analysed by establishing its model equation with an analytic correlation.
Keywords
References
Eren Z, J. Environ. Manage., 104, 127 (2012)
Jin XC, Liu GQ, Xu ZH, Tao WY, Appl. Microbiol. Biotechnol., 74(1), 239 (2007)
Kalra SS, Mohan S, Sinha A, Singh G, 2nd International Conference on Environmental Science and Development, Singapore (2011).
Paprowicz J, Słodczyk S, Environ. Technol. Lett., 9, 271 (1988)
Wu CH, Kuo CY, Chang CL, J. Hazard. Mater., 153(3), 1052 (2008)
Fahmi, Nishihima W, Okada M, Enviro 2002 & IWA 3rd World Water Conference, Melbourne, Australia (2002).
Scheck CK, Frimmel FH, Water Res., 29(10), 2346 (1995)
Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R, J. Hazard. Mater., 179(1-3), 552 (2010)
Chang SH, Chuang SH, Li HC, Liang HH, Huang LC, J. Hazard. Mater., 166(2-3), 1279 (2009)
Peternel IT, Koprivanac N, Bozic AML, Kugic HM, J. Hazard. Mater., 148(1-2), 477 (2007)
Akyol A, Bayramoglu M, Chem. Eng. Process., 47(12), 2150 (2008)
Zhang YG, MA LL, Li JL, YU Y, Environ. Sci. Technol., 41, 6264 (2007)
Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahraa O, Pons MN, van der Zee FP, Chemosphere, 72, 1816 (2008)
Chebli D, Fourcade F, Brosillon S, Nacef S, Amrane A, Environ. Technol., 32(5), 507 (2011)
Shah MP, American J. Microbiological Research, 1(4), 92 (2013)
Jafari N, Karsa-Kermanshahi R, Soudi MR, Mahvi AH, Gharavi S, Iranian Journal of Environmental Health Sciences & Engineering, 9(33), 1-7(2012).
Zhang X, Wu Y, Xiao G, Tang Z, Wang M, Liu F, Zhu X, PLoS One, 12(3), e01727 (2017)
Ma L, Zhang WX, Environ. Sci. Technol., 42(15), 5384 (2008)
Lin YT, Weng CH, Chen FY, Sep. Purif. Technol., 64(1), 26 (2008)
Shu HY, Chang MC, Chang CC, J. Hazard. Mater., 167(1-3), 1178 (2009)
Perey JR, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 74(3), 221 (2002)
Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 78(1), 19 (2006)
Choi Y, Park B, Cha DK, Korean J. Chem. Eng., 32(9), 1812 (2015)
Lee EJ, Lim KH, Korean Chem. Eng. Res., 53(1), 71 (2015)
Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39(5), 600 (2001)
Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70 (2005)
Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
Muruganandham M, Swaminathan M, Dyes Pigment., 68, 133 (2006)
Jin XC, Liu GQ, Xu ZH, Tao WY, Appl. Microbiol. Biotechnol., 74(1), 239 (2007)
Kalra SS, Mohan S, Sinha A, Singh G, 2nd International Conference on Environmental Science and Development, Singapore (2011).
Paprowicz J, Słodczyk S, Environ. Technol. Lett., 9, 271 (1988)
Wu CH, Kuo CY, Chang CL, J. Hazard. Mater., 153(3), 1052 (2008)
Fahmi, Nishihima W, Okada M, Enviro 2002 & IWA 3rd World Water Conference, Melbourne, Australia (2002).
Scheck CK, Frimmel FH, Water Res., 29(10), 2346 (1995)
Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R, J. Hazard. Mater., 179(1-3), 552 (2010)
Chang SH, Chuang SH, Li HC, Liang HH, Huang LC, J. Hazard. Mater., 166(2-3), 1279 (2009)
Peternel IT, Koprivanac N, Bozic AML, Kugic HM, J. Hazard. Mater., 148(1-2), 477 (2007)
Akyol A, Bayramoglu M, Chem. Eng. Process., 47(12), 2150 (2008)
Zhang YG, MA LL, Li JL, YU Y, Environ. Sci. Technol., 41, 6264 (2007)
Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahraa O, Pons MN, van der Zee FP, Chemosphere, 72, 1816 (2008)
Chebli D, Fourcade F, Brosillon S, Nacef S, Amrane A, Environ. Technol., 32(5), 507 (2011)
Shah MP, American J. Microbiological Research, 1(4), 92 (2013)
Jafari N, Karsa-Kermanshahi R, Soudi MR, Mahvi AH, Gharavi S, Iranian Journal of Environmental Health Sciences & Engineering, 9(33), 1-7(2012).
Zhang X, Wu Y, Xiao G, Tang Z, Wang M, Liu F, Zhu X, PLoS One, 12(3), e01727 (2017)
Ma L, Zhang WX, Environ. Sci. Technol., 42(15), 5384 (2008)
Lin YT, Weng CH, Chen FY, Sep. Purif. Technol., 64(1), 26 (2008)
Shu HY, Chang MC, Chang CC, J. Hazard. Mater., 167(1-3), 1178 (2009)
Perey JR, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 74(3), 221 (2002)
Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 78(1), 19 (2006)
Choi Y, Park B, Cha DK, Korean J. Chem. Eng., 32(9), 1812 (2015)
Lee EJ, Lim KH, Korean Chem. Eng. Res., 53(1), 71 (2015)
Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39(5), 600 (2001)
Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70 (2005)
Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
Muruganandham M, Swaminathan M, Dyes Pigment., 68, 133 (2006)