ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 20, 2017
Accepted August 18, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube

강원대학교 화학공학과, 24341 강원도 춘천시 강원대학길 1 1강원대학교 나노응용공학과, 24341 강원도 춘천시 강원대학길 1 2한국과학기술연구원 녹색도시기술연구소, 02792 서울특별시 성북구 화랑로 14길 5 3인하대학교 화학공학과, 22212 인천광역시 남구 인하로 100
Department of Chemical Engineering, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Korea 1Department of Nano Applied Engineering, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Korea 2Green City Technology Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Korea 3Department of Chemical Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 22212 Korea
Korean Chemical Engineering Research, February 2018, 56(1), 49-55(7), 10.9713/kcer.2018.56.1.49 Epub 2 February 2018
downloadDownload PDF

Abstract

에너지 위기 시대를 맞이하여 수소에너지가 가장 가능성 있는 대체에너지 중의 하나로 고려되고 있다. 액체수소는 기체수소와 비교하여 단위 부피당 에너지 밀도가 월등히 높으며 수소에너지의 탁월한 저장 방법으로 간주되고 있다. 본 연구에서는 2 상 모델에 기초를 둔 Navier-Stokes 식을 전산유체역학 프로그램을 이용하여 풀었으며, 초저온 냉각튜브를 통과하면서 기체수소가 액화되는 과정을 분석하였다. 열전도율이 높은 구리관을 초저온 냉각을 위한 관의 재질로 가정하였다. 기체수소의 유입속도를 5 cm/s, 10 cm/s, 20 cm/s로 변화시키면서 냉각튜브 내 유체 온도분포, 축방향 및 반경방향 유체 속도, 기체 및 액체 수소 부피분율 분포를 각각 분석하였다. 본 연구 결과는 향후 액체수소 제조를 위한 기체수소 초저온 냉각기의 설계 및 제작을 위한 기초자료로 활용이 될 것으로 기대된다.
Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

References

Simpson AP, Lutz AE, Int. J. Hydrog. Energy, 32(18), 4811 (2007)
Stojic DL, Marceta MP, Sovilj SP, Miljanic SS, J. Power Sources, 118(1-2), 315 (2003)
Yildiz B, Kazimi MS, Int. J. Hydrog. Energy, 31(1), 77 (2006)
Kang K, Azargohar R, Dalai AK, Wang H, Energy Conv. Manag., 117, 528 (2016)
Ding JR, Kim KS, AIChE J., 62(2), 421 (2016)
Kim D, Han GB, Park NK, Lee TJ, Kang M, Korean Chem. Eng. Res., 51(4), 513 (2013)
Zeng K, Zhang DK, Prog. Energy Combust. Sci., 36(3), 307 (2010)
Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC, Kircher O, Int. J. Hydrog. Energy, 35(3), 1219 (2010)
Khorasany RMH, Singh Y, Alavijeh AS, Kjeang E, Wang GG, Rajapakse RKND, Int. J. Hydrog. Energy, 41(21), 8992 (2016)
Das T, Kweon SC, Choi JG, Kim SY, Oh IH, Int. J. Hydrog. Energy, 40(1), 383 (2015)
Kang SK, Powder Technology, Hoejungdang, Seoul (1995).
Song YS, Katz JL, Korean Chem. Eng. Res., 40(1), 34 (2002)
Trans. Korean Hydrogen, Lee DW, Nguyen HH, Nasonova A, Oh IH, Kim KS, Trans. of the Korean Hydrogen and New Energy Society, 26, 301-307(2015).
Geankoplis CJ, Pearson education international, 4th, 193-209(2003).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로