ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 16, 2017
Accepted August 18, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

혼합영양 배양조건에서의 Anabena 배양을 위한 유기탄소(acetate 종류 및 농도) 선정 연구

Selection of Organic Carbon (Different Form of Acetate Compounds and Concentration) for Cultivation of Anabena under Mixotrophic Cultivation Mode

부경대학교 환경공학과, 48513 부산광역시 남구 용소로 45
Department of Environmental Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan, 48513, Korea
badger74w@pknu.ac.kr
Korean Chemical Engineering Research, February 2018, 56(1), 73-78(6), 10.9713/kcer.2018.56.1.73 Epub 2 February 2018
downloadDownload PDF

Abstract

본 연구는 혼합영양 배양 조건에서 acetate의 주입이 Anabena azollae의 성장에 미치는 영향을 파악하기 위해 수행 되었다. 4가지 종류의 acetate 중 ethyle acetate가 Anabena azollae의 성장에 가장 효과적이라고 밝혀졌으며, 주입한 ethyle acetate의 농도가 증가할수록 성장속도는 증가하는 것을 확인하였다. 40 mM의 ethyl acetate의 경우 비성장속도는 0.979 day-1, 최대바이오매스 생산성은 0.293 g L-1 d-1로 본 연구에서 배양속도가 가장 빠른 것으로 판명되었다. Acetic acid와 butyl acetate의 경우 Anabena azollae 성장을 방해하는 것으로 나타났다. Aetration의 경우 0.54 vvm에서 성장속도가 가장 빨랐다. 반연속배양에서는 aeration 실험이 끝난 후 연속하여 ethyle acetate 주입을 하여 배양을 하였다. 회분식실험에 비해 반연속배양에서의 비성장속도와 최대바이오매스 생산성은 모두 감소하였지만 최대 농도는 5.91 g/L로 가장 큰 값을 나타내었다.
The main objective of this study was to evaluate the effects of acetate on the cultivation of anabena under mixotrophic condition. Four different types of acetates were used for the anebena cultivation. Among them, ethyl acetate was found to be the most effective and the growth rates linearly increased as the amount of ethyl acetate increased. When 40 mM of ethyl acetate was used, the highest values of specific growth rate of 0.979 day-1 and maximum biomass productivity of 0.293 g L-1 d-1 were obtained. On the contrary, input of acetic acid and butyl acetate inhibited the growth of anabena. For aeration tests, 0.54 vvm was optimum for anabena cultivation. For a semi-continuous cultivation test, ethyl acetate was used after 0.54 vvm test was finished. Then, test continued under 0.54 vvm and 40 mM of ethyl acetate. Lower specific growth rate and maximum biomass productivity were obtained compared to those from batch cultivation tests. However, the greatest maximum concentration of 5.91 g/L was obtained during the semi continuous cultivation test.

References

Markou G, Vandamme D, Muylaert K, Water Res., 65(15), 186 (2014)
Markou G, Georgakakis D, Appl. Energy, 88(10), 3389 (2011)
Pate R, Klise G, Wu B, Appl. Energy, 88(10), 3377 (2011)
Canter CE, Blowers P, Handler RM, Shonnard DR, Appl. Energy, 143, 71 (2015)
Pittman JK, Dean AP, Osundeko O, Bioresour. Technol., 102(1), 17 (2011)
Chen H, Qiu T, Rong JF, He CL, Wang Q, Appl. Energy, 155, 585 (2015)
Endo H, Sansawa H, Nakajima K, Plant Cell Physiol., 18(1), 199 (1977)
Zhan J, Rong J, Wang Q, Int. J. Hydrog. Energy, 7(12), 1 (2016)
Andrade MR, Costa JAV, Aquaculture, 264(1-4), 130 (2007)
Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, Protoplasma, 250(1), 161 (2013)
Gim GH, Kim JK, Kim HS, Kathiravan MN, Yang H, Jeong SH, Bioprocess. Biosyst. Eng., 37(2), 99 (2014)
Jurado-Oller JL, Dubini A, Galvan A, Fernandez E, Gonzalez-Ballester D, Biotechnology Biofuels, 8(1), 149 (2015)
Lee JK, Koh TH, Kim SK, Lee TY, J. Korean Geo-Environmental Soc., 10(6), 61 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로