ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 19, 2017
Accepted October 16, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

염기성 염료 Basic Blue 3에 대한 야자계 입상활성탄의 흡착 특성

Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Basic Blue 3

1경상대학교 해양시스템공학과, 53064 경남 통영시 천대국치길 38 2경상대학교 해양환경공학과, 해양산업연구소, 53064 경남 통영시 천대국치길 38
1Department of Ocean System Engineering, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do, 53064, Korea 2Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do, 53064, Korea
sungukw@gmail.com
Korean Chemical Engineering Research, February 2018, 56(1), 96-102(7), 10.9713/kcer.2018.56.1.96 Epub 2 February 2018
downloadDownload PDF

Abstract

본 연구에서는 Basic Blue 3 (BB3)에 대한 야자계 입상활성탄의 흡착특성을 평가하였다. 입상활성탄의 투여량이 증가함에 따라 BB3의 제거율은 증가하는 경향을 보였고, 0.2 g 투여량에서 초기농도 50 mg/L의 BB3가 완전히 제거되 었다. 흡착평형은 초기농도 25 mg/L와 50 mg/L에서 각각 270분과 420분이 소요되었으며, 실험데이터는 유사 2차 속도식으로 잘 묘사되었다. Langmuir 식에서 예측된 최대흡착량은 298, 308, 318 K에서 34.45, 46.63, 53.10 mg/g으로 온도가 증가할수록 증가하였다. 또한, Gibbs 자유에너지 변화(ΔG)는 온도 증가에 따라 -7.37, -8.19, -10.40 kJ/mol으로 변화하였고, 엔탈피 변화(ΔH) 및 엔트로피 변화(ΔS)는 34.47 kJ/mol과 0.15 J/mol K로 계산되었다. 따라서 야자계 입상활성탄에 의한 BB3 흡착은 자발적이고 흡열적이었다.
In this study, adsorption characteristics of coconut shell-based granular activated carbon (CS-GAC) on Basic Blue 3 (BB3) were evaluated. As the dosage of CS-GAC increased, the removal efficiency of BB3 tended to increase and the initial dye concentration of 50 mg/L was completely removed at 0.2 g dosage. Adsorption equilibrium achieved within 270 and 420 min at the initial concentrations of 25 and 50 mg/L, respectively, and the experimental data were represented by the pseudo-second-order model. The maximum uptakes (qmax) predicted by the Langmuir model were 34.45, 46.63 and 53.10 mg/g at 298, 308 and 318 K, respectively. The qmax value increased as the temperature increased. Also, the Gibbs free energy (ΔG) was changed to -7.37, -8.19 and -10.40 kJ/mol with increasing temperature. The enthalpy change (ΔH) and the entropy change (ΔS) were 34.47 kJ/mol and 0.15 J/mol K, respectively. Therefore adsorption of BB3 by CS-GAC was spontaneous and endothermic.

References

Gupta VK, Suhas J, J. Environ. Manage., 90, 2313 (2009)
Novotny C, Dias N, Kapanen A, Malachova K, Vandrovcova M, Itavaara M, Lima N, Chemosphere, 63, 1436 (2006)
Wawrzkiewicz M, Chem. Eng. J., 217, 414 (2013)
Marungrueng K, Pavasant P, J. Environ. Manage., 78, 268 (2006)
Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127(1-3), 111 (2007)
Aksu Z, Process Biochem., 40(3-4), 997 (2005)
Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364 (2005)
Lee JJ, Korean Chem. Eng. Res., 54, 225 (2016)
Lee JJ, Korean Chem. Eng. Res., 53, 1 (2015)
Aljeboree AM, Alshirifi AN, Alkaim AF, Arab. J. Chem., 10, S3381 (2017)
Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M, J. Taiwan Inst. Chem. Eng., 53, 112 (2015)
Porselvi E, Krishnamoorthy P, J. Mater. Environ. Sci., 5, 408 (2014)
Hameed KS, Muthirulan P, Sundaram MM, Arab. J. Chem., 10, S2225 (2017)
Tan IAW, Ahmad AL, Hameed BH, Desalination, 225(1-3), 13 (2008)
Zogorski JS, Faust SD, Haas JH, J. Colloid Interface Sci., 55, 329 (1976)
Basibuyuk M, Forster CF, Process Biochem., 38(9), 1311 (2003)
Chu HC, Chen KM, Process Biochem., 37(6), 595 (2002)
Shi Y, Kong XZ, Zhang CM, Chen YM, Hua YF, Chem. Eng. J., 215, 113 (2013)
Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
Zhang J, Li Y, Zhang C, Jing Y, J. Hazard. Mater., 150, 774 (2008)
Kim SY, Jin MR, Chung CH, Yun YS, Jahng KY, Yu KY, Environ. Sci. Technol., 119, 443 (2015)
Han Y, Kim H, Park J, Chem. Eng. J., 210, 482 (2012)
Ma LW, Chen BZ, Chen Y, Shi XC, Micro. Meso. Mater., 142, 147 (2011)
Wong SY, Tan YP, Abdullah AH, Ong ST, J. Physical Science, 20, 29 (2009)
Lee JJ, Appl. Chem. Eng., 27(2), 199 (2016)
Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
Ryoo KS, Hong YP, Ahn CJ, J. Korean Chem. Soc, 56, 692 (2012)
Sivakumar P, Palanisamy PN, Int. J. ChemTech Research, 1, 502 (2009)
Lee JJ, Korean Chem. Eng. Res., 55(4), 514 (2017)
Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로