ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 5, 2018
Accepted May 24, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design

부경대학교 화학공학과, 48547 부산광역시 남구 신선로 365 1제주대학교 환경공학과, 63243 제주특별자치도 제주시 제주대학로 102
Department of Chemical Engineering, Pukyong National University, 365, Sinseon-ro, Nam-gu, Busan, 48547, Korea 1Department of Environmental Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Korea
Korean Chemical Engineering Research, August 2018, 56(4), 568-576(9), 10.9713/kcer.2018.56.4.568 Epub 3 August 2018
downloadDownload PDF

Abstract

폐감귤박으로 제조한 활성탄(WCAC, waste citrus peel based activated carbon)에 의한 항생제 trimethoprim (TMP) 의 흡착 특성을 조사하기 위해 반응표면법(RSM, response surface methodology)을 사용하여 TMP 흡착에 대한 운전인자들의 영향을 조사하였다. 농도(X1: 50-150 mg/L), pH (X2: 4-10), 온도(X3: 293-323 K), 흡착제 투여량(X4: 0.05-0.15 g)의 4가지 입력 파라미터를 가진 4-요인 Box-Behnken 실험 설계에 따라 회분식 실험을 수행하고, 얻어진 실험 결과를 다중 회귀 분석으로 2차 다항식에 맞추고 통계적 방법을 사용하여 검토하였다. 독립 변수 및 변수들 간의 교호 작용의 유의성은 ANOVA 및 t-검정 통계기법으로 평가하였으며, 통계적 결과는 TMP 농도가 다른 요인들에 비하여 가장 많은 영향을 미치는 운전인자라는 것을 보여 주었다. 흡착공정은 유사 2차 속도식에 잘 부합하였으며, 등온흡착평형관계는 Langmuir 식이 Freundlich 식 보다 잘 부합하였다. Langmuir 등온식으로 부터 계산한 WCAC에 의한 TMP의 최대 흡착량은 293 K에서 144.9 mg/g이었다.
In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box.Behnken experimental design with four input parameters : concentration (X1: 50-150 mg/L), pH (X2: 4-10), temperature (X3: 293-323 K), adsorbent dose (X4: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

References

Jo JH, Lim DH, Seo GT, J. Kor. Soc. Environ. Eng., 35(7), 457 (2013)
Dominguez-Vargas JR, Carrillo-Perez V, Gonzalez-Montero T, Cuerda-Correa EM, Water Air Soil Pollut., 223, 4577 (2012)
Pedrouzo M, Borrull F, Pocurull E, Marce RM, Water Air Soil Pollut., 217, 267 (2011)
Fukahori S, Fujiwara T, Ito R, Funamizu N, Desalination, 275(1-3), 237 (2011)
Dardouri S, Sghaier J, Korean J. Chem. Eng., 34(4), 1037 (2017)
Snyder S, Westerhoff P, Yoon Y, Sedlak DL, Environ. Eng. Sci., 20, 449 (2003)
Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N, Environ. Sci. Technol., 36(17), 3855 (2002)
Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S, Water Res., 43, 2419 (2009)
Chayid MA, Ahmed MA, J. Environ. Chem. Eng., 3, 1592 (2015)
Mendez-Diaz JD, Prados-Joya G, Rivera-Utrilla J, Leyva-Ramos R, Sanchez-Polo M, Ferro-Garcia MA, Medellin-Castillo NA, J. Colloid Interface Sci., 345(2), 481 (2010)
Ocampo-Perez R, Orellana-Garcia F, Sanchez-Polo M, Rivera-Utrilla J, Velo-Gala I, Lopez-Ramon MV, Alvarez-Merino MA, J. Colloid Interface Sci., 401, 116 (2013)
Caliskan E, Gokturk S, Sep. Sci. Technol., 45(2), 244 (2010)
Aksu Z, Tunc O, Process Biochem., 40(2), 831 (2005)
Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF, Bioresour. Technol., 99(10), 4515 (2008)
Xu X, Cao X, Zhao L, Chemosphere, 92(8), 955 (2013)
Baccar R, Sarra M, Bouzid J, Feki M, Blanquez P, Chem. Eng. J., 211-212, 310 (2012)
Flores-Cano JV, Sanchez-Polo M, Messoud J, Ocampo-Perez R, Rivera-Utrilla J, J. Environ. Manage., 169, 116 (2016)
Wan SG, Hua ZL, Sun L, Bai X, Liang L, Process Saf. Environ. Protect., 104, 422 (2016)
Kam SK, KanG KH, Lee MG, Appl. Chem. Eng., 28(6), 649 (2017)
Lee CH, Kam SK, Lee MG, Korean Chem. Eng. Res., 55(5), 723 (2017)
Kam SK, Lee MG, Appl. Chem. Eng., 29(3), 270 (2018)
Alam Z, Muyibi SA, Toramae J, J. Environ. Sci., 19, 674 (2007)
Saadat S, Karimi-Jashni A, Chem. Eng. J., 173(3), 743 (2011)
Kim DS, Park YS, J. Environ. Sci. Int., 19(7), 889 (2010)
Park HE, Row KH, Appl. Chem. Eng., 24(3), 299 (2013)
Lee SE, Kim JK, Han SK, Chae JS, Lee KD, Koo KK, Appl. Chem. Eng., 26(6), 730 (2015)
Kam SK, Hyun SS, Lee MG, J. Environ. Sci. Intern., 20, 1337 (2011)
Lagergren S, Kunglia Svenska Vetenskapsa-kademiens, 24, 1 (1898)
Ho YS, McKay G, Can. J. Chem. Eng., 76(4), 822 (1998)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
Kim SH, Shon HK, Ngo HH, J. Ind. Eng. Chem., 16(3), 344 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로