Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 2, 2018
Accepted July 4, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용
Electrostatic Interaction between Zirconia and 11-Mercaptoundecylphosphoric-acid Layer Formed on Gold Surfaces
서울과학기술대학교 화공생명공학과, 01811 서울특별시 노원구 공릉로 232
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232, Gongreungro, Nowonku, Seoul, 01811, Korea
jwpark@seoultech.ac.kr
Korean Chemical Engineering Research, October 2018, 56(5), 625-630(6), 10.9713/kcer.2018.56.5.625 Epub 5 October 2018
Download PDF
Abstract
지르코니아와 금 표면 위에 형성된 메르캡토언데실인산층 사이에서 정전기적 상호작용이 규명되었다. 이를 위하여, 원자힘현미경(AFM)이 표면들 사이에서 pH값과 염 농도에 따라 작용하는 힘의 측정에 이용되었다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek (DLVO) 이론으로 해석되어 각 조건에 대해서 표면의 정전기적인 특성들이 정량적으로 산출되었다. 이 표면 특성들의 염 농도와 pH에 대한 의존성이 질량보존의 법칙으로 예측된 결과와 일치하였다. pH 의존성은 표면 위의 이온화 기능기들로 설명될 수 있다. pH 4와 8에서 메르캡토언데실인산층이 지르코니아보다 더 많은 표면전하밀도와 전위차를 가지는 것은 그 층의 이온화 기능기들에 기인한 것으로 생각된다.
The electrostatic interactions were investigated between the zirconia and the 11-Mercaptoundecylphosphoric- acid layer formed on gold surfaces for their complex structures. For the investigation, the atomic force microscope was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the Derjaguin-Landau-Verwey-Overbeek theory to estimate the potential and charge density of the surfaces for each condition. The concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law of mass action. The pH dependence was explained with the ionizable groups on the surface. It was found that the 11-Mercaptoundecylphosphoric-acid layer had higher values for the surface charge densities and potentials than the zirconia surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the layer.
References
Soolaman DM, Yu HZ, J. Phys. Chem. C, 111, 14157 (2007)
Hugon A, Delannoy L, Louis C, Gold Bull., 41, 127 (2008)
Zhang X, Shi H, Xu BQ, J. Catal., 279(1), 75 (2011)
Wang CM, Fan KN, Liu ZP, J. Am. Chem. Soc., 129(9), 2642 (2007)
Kwak JH, Han GY, Bae JW, Yoon KJ, Korean J. Chem. Eng., 1000, 1 (2014)
Kim MY, Seo G, Park JH, Shin CH, Kim ES, Korean Chem. Eng. Res., 49(1), 1 (2011)
Arrii S, Morfin F, Renouprez AJ, Rousset JL, J. Am. Chem. Soc., 126(4), 1199 (2004)
Zhang X, Wang H, Xu BQ, J. Phys. Chem. B, 109(19), 9678 (2005)
Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998)
Sakurai H, Tsubota S, Haruta M, Appl. Catal. A: Gen., 102(2), 125 (1993)
Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28(6), 1015 (2007)
Schmid G, Chem. Rev., 92(8), 1709 (1992)
Noh J, Park H, Jeong Y, Kwon S, Bull. Korean Chem. Soc., 27, 403 (2006)
Dasog M, Scott RWJ, Langmuir, 23(6), 3381 (2007)
Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 3336 (2001)
Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089 (2001)
Binnig G, Quate CF, Gerber C, Phys. Rev. Lett., 56, 930 (1986)
Derjaguin BV, Landau L, Acta Physiochem. URSS, 14(11), 633 (1941)
Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64, 403 (1993)
Derjaguin B, Trans. Faraday Soc., 35(3), 203 (1940)
Israelachvili JN, Adams GE, J. Chem. Soc.-Faraday Trans., 74, 975 (1978)
Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108 (1993)
Parker JL, Christenson HK, J. Chem. Phys., 88, 8013 (1988)
O’Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
Derjaguin BV, Kolloid Z., 69(2), 155 (1934)
Hartmann U, Phys. Rev. B, 43, 2404 (1991)
Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183-192(1991).
Shin H, Agarwal M, de Guire MR, Heuer AH, Acta Mater., 46, 801 (1998)
Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63(1948).
Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., 62(522P), 1638 (1966)
Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417(1987).
Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283 (1980)
Parker JL, Prog. Surf. Sci., 47(3), 205 (1994)
Park JW, Appl. Chem. Eng., 25(6), 607 (2014)
Park JW, Ahn DJ, Colloids Surf. B: Biointerfaces, 62, 157 (2008)
Ducker WA, Senden TJ, Pashley RM, Nature, 353(6341), 239 (1991)
Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404 (1989)
Choi JY, Kim DK, J. Sol-Gel Sci. Technol., 15, 231 (1999)
Schultz M, Grimm S, Burckhardt W, Solid State Ion., 63-65, 18 (1993)
Pashley RM, J. Colloid Interface Sci., 83(2), 531 (1981)
Weast RC, CRC Handbook of Chemistry and Physics (64th ed.), CRC Press, Boca Raton, Florida, p. D-169(1983).
Hugon A, Delannoy L, Louis C, Gold Bull., 41, 127 (2008)
Zhang X, Shi H, Xu BQ, J. Catal., 279(1), 75 (2011)
Wang CM, Fan KN, Liu ZP, J. Am. Chem. Soc., 129(9), 2642 (2007)
Kwak JH, Han GY, Bae JW, Yoon KJ, Korean J. Chem. Eng., 1000, 1 (2014)
Kim MY, Seo G, Park JH, Shin CH, Kim ES, Korean Chem. Eng. Res., 49(1), 1 (2011)
Arrii S, Morfin F, Renouprez AJ, Rousset JL, J. Am. Chem. Soc., 126(4), 1199 (2004)
Zhang X, Wang H, Xu BQ, J. Phys. Chem. B, 109(19), 9678 (2005)
Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998)
Sakurai H, Tsubota S, Haruta M, Appl. Catal. A: Gen., 102(2), 125 (1993)
Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28(6), 1015 (2007)
Schmid G, Chem. Rev., 92(8), 1709 (1992)
Noh J, Park H, Jeong Y, Kwon S, Bull. Korean Chem. Soc., 27, 403 (2006)
Dasog M, Scott RWJ, Langmuir, 23(6), 3381 (2007)
Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 3336 (2001)
Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089 (2001)
Binnig G, Quate CF, Gerber C, Phys. Rev. Lett., 56, 930 (1986)
Derjaguin BV, Landau L, Acta Physiochem. URSS, 14(11), 633 (1941)
Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64, 403 (1993)
Derjaguin B, Trans. Faraday Soc., 35(3), 203 (1940)
Israelachvili JN, Adams GE, J. Chem. Soc.-Faraday Trans., 74, 975 (1978)
Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108 (1993)
Parker JL, Christenson HK, J. Chem. Phys., 88, 8013 (1988)
O’Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
Derjaguin BV, Kolloid Z., 69(2), 155 (1934)
Hartmann U, Phys. Rev. B, 43, 2404 (1991)
Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183-192(1991).
Shin H, Agarwal M, de Guire MR, Heuer AH, Acta Mater., 46, 801 (1998)
Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63(1948).
Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., 62(522P), 1638 (1966)
Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417(1987).
Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283 (1980)
Parker JL, Prog. Surf. Sci., 47(3), 205 (1994)
Park JW, Appl. Chem. Eng., 25(6), 607 (2014)
Park JW, Ahn DJ, Colloids Surf. B: Biointerfaces, 62, 157 (2008)
Ducker WA, Senden TJ, Pashley RM, Nature, 353(6341), 239 (1991)
Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404 (1989)
Choi JY, Kim DK, J. Sol-Gel Sci. Technol., 15, 231 (1999)
Schultz M, Grimm S, Burckhardt W, Solid State Ion., 63-65, 18 (1993)
Pashley RM, J. Colloid Interface Sci., 83(2), 531 (1981)
Weast RC, CRC Handbook of Chemistry and Physics (64th ed.), CRC Press, Boca Raton, Florida, p. D-169(1983).