Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 7, 2018
Accepted August 14, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석
Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model
전북대학교 자원에너지공학과, 54896 전라북도 전주시 덕진구 백제대로 567 1한국기계연구원 환경시스템연구본부, 34103 대전광역시 유성구 가정북로 156
Department of Mineral resources energy engineering, Chonbuk national university, 567, Baekje-daero, Deokjin-gu, Jeonju-si, jeollabuk-do, 54896, Korea 1Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Korea
donald@jbnu.ac.kr
Korean Chemical Engineering Research, October 2018, 56(5), 631-640(10), 10.9713/kcer.2018.56.5.631 Epub 5 October 2018
Download PDF
Abstract
에너지 공급 안정과 온실가스 저감이라는 목표를 달성하기 위해 저등급 석탄의 순산소 순환유동층 보일러의 적용이 새롭게 모색되고 있다. 아직까지 실증 단계의 개발이 진행되고 있기에 순산소 순환유동층 보일러에서의 저급탄 이용을 위해 주입 공기량, 조업 온도, 연료 공급량 등의 변화에 따른 연소 특성이 고찰되어야 상용 모델을 위한 설계 기준을 선정할 수 있다. 이에 본 연구에서는 공기 연소로 개발된 IEA-CFBC 모델을 순산소 연소를 전산모사하도록 개조하였고 새로운 순산소 순환유동층 모델을 이용하여 온도(800 °C~900 °C), 산소 농도(21%~41%), 석탄 주입량, Ca/S 비율(1.5~4.0) 등의 다양한 조건에서 순산소 연소 특성을 고찰하였다. 공기 연소와 비교하여, 순산소 조건에서의 보일러 온도가 높았으나 산소 농도가 증가함에 따라 보일러의 온도구배는 감소하는 경향을 나타냈다. 더불어 Ca/S 비율, 산소 농도가 높을수록 탈황 효율이 증가하는 것으로 나타났다.
The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy- CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy- CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature (800 °C~900 °C), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of SOx, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.
Keywords
References
Lee CH, Yonsei University Master Thesis(2015).
Kim T, Choi S, J. Korean Society Combustion, 16, 16 (2011)
Kim YK, Yonsei University Master Thesis(2003).
EBnews (EBN chemical), “Energy and Chemical Industry 3-1:Coal Energy,” http://chem.ebn.co.kr/news/view/53346(2007).
India Habitat Centre, “Principle of Fluidization, 2ND Conference on Building Partnership for Sustainable CSR”, (2014).
Crane Company, “Flow of Fluids Through Valves, Fittings, and Pipe,” Technical Paper, p. 410(1988).
Weast RC, Chemical Rubber Company, 65, F42 (1984)
Lemmon EW, Jacobsen RT, Int. J. Thermophys., 25, 21 (2004)
Faghri A, Zhang Y, Elsevier, 957-957(2006).
Lunbo D, Changsui Z, Wu Z, Chengrui Q, Xiaoping C, Int. J. Green house Gascontrol, 5, 770 (2011)
Incropera FP, DeWitt DP, Bergman TL, Lavine AS, John Wiley & Sons, 6., (2007).
Mathekga HI, Oboiirien BO, North BC, Energy Research, 878-902(2016).
Jia L, Tan Y, McCalden D, Wu Y, He I, Int. J. Greenhouse Gas Control, 7, 240 (2012)
Farooq S, Miguel AP, Chenggong S, Colin S, Hao L, Fuel, 778-786(2018).
Sung JH, Seo YC, Jang HN, Back SK, Jeong BM, Jeong HK, Jung SJ, Cho YT, Kroean Chem. Eng. Res., 55, 846 (2017)
Heinbockel, Ph.D. Dissertation, Siegen University, Germany (1995).
Zhang L, Li TD, Zhen QY, Lu CD, 11th Int. Conf. on fluid. Bed Comb., 1289(1991).
Mori S, Narukawa K, Yamada I, Takebayashi T, Tanii H, Tomoyasu Y, Mii T, 11th Int. Conf. on Fluid. Bed Comb.,1261-1265(1991).
Sengrupta SP, Basu PA, 11th Int. Conf. on Fluid. Bed Comb., p.1295-1301,(1991).
Xu X, Mao J, Proc. 4th Int. Conf. on Circ. Fluid. Beds, 104-109(1993).
Lin X, Li Y, Proc. 4th Int. Conf. on Circ. Fluid. Beds, Somerset, 547-552(1993).
Halder PK, Datta A, Proc. 4th Int. Conf. on Circ. Fluid. Beds, 92-97(1993).
Saraiva PC, Azevedo JLT, Carvalho MG, 12th Int. Conf. on FIuid Bed Comb., 375-380(1993).
Hypannen T, Lee YY, Ketunen A, Riiali J, 12th Int. Conf. on Fluid. Bed Comb., 1121-1127(1993).
Haider M, “Ein stationares Simulationsmodell fur Dampferzeuger mit Zirkulierender Wirbelschicht,” Vienna University(1993).
Prichett JW, Blake TR, Garg SK, AIChE Symp. Ser., 134(1978).
Balzer G, Simonin O, “On Refined Flow Modelling and Turbulence Measurements,” Proc. 5th Int. Symp.(1993).
Jayarathna CK, Moldestad BE, Tokheim LA, Linkoping Electronic Conference Proceddings, 76-82(2017).
Kallio S, Ariaksinen J, Gulden M, Hermanson A, Peltola J, Ritvaanen J, Seppala M, Shah S, Taivassalo V, Experimental and Numerical Study of Hydrodynamics in a Circulating Fluidized Bed,” (2009).
Seddighi S, Pallares D, Johnsson F, ECI Digital Archives(2010).
Kim T, Choi S, J. Korean Society Combustion, 16, 16 (2011)
Kim YK, Yonsei University Master Thesis(2003).
EBnews (EBN chemical), “Energy and Chemical Industry 3-1:Coal Energy,” http://chem.ebn.co.kr/news/view/53346(2007).
India Habitat Centre, “Principle of Fluidization, 2ND Conference on Building Partnership for Sustainable CSR”, (2014).
Crane Company, “Flow of Fluids Through Valves, Fittings, and Pipe,” Technical Paper, p. 410(1988).
Weast RC, Chemical Rubber Company, 65, F42 (1984)
Lemmon EW, Jacobsen RT, Int. J. Thermophys., 25, 21 (2004)
Faghri A, Zhang Y, Elsevier, 957-957(2006).
Lunbo D, Changsui Z, Wu Z, Chengrui Q, Xiaoping C, Int. J. Green house Gascontrol, 5, 770 (2011)
Incropera FP, DeWitt DP, Bergman TL, Lavine AS, John Wiley & Sons, 6., (2007).
Mathekga HI, Oboiirien BO, North BC, Energy Research, 878-902(2016).
Jia L, Tan Y, McCalden D, Wu Y, He I, Int. J. Greenhouse Gas Control, 7, 240 (2012)
Farooq S, Miguel AP, Chenggong S, Colin S, Hao L, Fuel, 778-786(2018).
Sung JH, Seo YC, Jang HN, Back SK, Jeong BM, Jeong HK, Jung SJ, Cho YT, Kroean Chem. Eng. Res., 55, 846 (2017)
Heinbockel, Ph.D. Dissertation, Siegen University, Germany (1995).
Zhang L, Li TD, Zhen QY, Lu CD, 11th Int. Conf. on fluid. Bed Comb., 1289(1991).
Mori S, Narukawa K, Yamada I, Takebayashi T, Tanii H, Tomoyasu Y, Mii T, 11th Int. Conf. on Fluid. Bed Comb.,1261-1265(1991).
Sengrupta SP, Basu PA, 11th Int. Conf. on Fluid. Bed Comb., p.1295-1301,(1991).
Xu X, Mao J, Proc. 4th Int. Conf. on Circ. Fluid. Beds, 104-109(1993).
Lin X, Li Y, Proc. 4th Int. Conf. on Circ. Fluid. Beds, Somerset, 547-552(1993).
Halder PK, Datta A, Proc. 4th Int. Conf. on Circ. Fluid. Beds, 92-97(1993).
Saraiva PC, Azevedo JLT, Carvalho MG, 12th Int. Conf. on FIuid Bed Comb., 375-380(1993).
Hypannen T, Lee YY, Ketunen A, Riiali J, 12th Int. Conf. on Fluid. Bed Comb., 1121-1127(1993).
Haider M, “Ein stationares Simulationsmodell fur Dampferzeuger mit Zirkulierender Wirbelschicht,” Vienna University(1993).
Prichett JW, Blake TR, Garg SK, AIChE Symp. Ser., 134(1978).
Balzer G, Simonin O, “On Refined Flow Modelling and Turbulence Measurements,” Proc. 5th Int. Symp.(1993).
Jayarathna CK, Moldestad BE, Tokheim LA, Linkoping Electronic Conference Proceddings, 76-82(2017).
Kallio S, Ariaksinen J, Gulden M, Hermanson A, Peltola J, Ritvaanen J, Seppala M, Shah S, Taivassalo V, Experimental and Numerical Study of Hydrodynamics in a Circulating Fluidized Bed,” (2009).
Seddighi S, Pallares D, Johnsson F, ECI Digital Archives(2010).