Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 5, 2018
Accepted June 29, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응
Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot
강원대학교 화학생물공학부, 24341 강원도 춘천시 강원대학길 1
Department of Chemical Engineering and Bioengineering, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Korea
Korean Chemical Engineering Research, October 2018, 56(5), 752-760(9), 10.9713/kcer.2018.56.5.752 Epub 5 October 2018
Download PDF
Abstract
경유자동차에서 배출되는 탄소 입자상 물질 연소 온도구간을 낮추는 것은 미세먼지 배출 저감과 내연기관 자동차의 고연비·저배출 성능 구현이라는 측면에서 매우 중요한 기술적 과제 중 하나이다. 본 논문에서는 탄소 입자상 물질의 산화를 위해 오존을 산화제로 이용하고 백금계 산화촉매를 동시에 적용했을 때 관찰되는 150 °C 부근 저온영역에서의 탄소 입자상 물질 연소반응에 관하여 논했다. 백금계 산화촉매를 적용했을 때 오존에 의한 탄소 입자상 물질의 산화속도를 크게 개선시키지 못했지만 연소반응의 이산화탄소 선택도를 향상시켰으며, 탄소 입자상 물질의 선택적 산화를 위해 고려된 NO의 NO2로의 사전 전환(NO2-rich 조건)은 NO2와 오존의 상호 상승작용에 의해 150 °C 부근 온도영역에서의 탄소상 입자물질 연소성능을 높이는데 효과가 있었다.
The lowering of temperature for combustion of diesel particulate matters (or diesel soot) is one of the important tasks in automotive industry that is searching for a way to meet up “high-fuel efficiency, low-emission” standard. In this study, it was discussed how the use of ozone over platinum-based catalyst promotes a low-temperature soot oxidation occurred at 150 °C. The use of platinum catalyst did not increase oxidation rate largely but was very effective in improving the selectivity of carbon dioxide. The pre-oxidation of NO into NO2 using ozone was rather crucial in improving the oxidation rate of soot at 150 °C.
References
Korean Ministry of Environment, Administrative Publication No. 11-1480000-001435-01, April, 2016.
Jeong JW, News Info. Chem. Eng., 33(4), 431 (2015)
USDRIVE Workshop Report (2012): https://www.pnnl.gov/main/publications/external/technical_ Reports/PNNL-22815.pdf.
DieselNet Technology: Emission Aftertreatment/Catalyst Technologies/Diesel Catalysts/Diesel Oxidation Catalyst, https://www.dieselnet.com/tech/cat_doc.php.
Park SH, Lee KY, Cho SJ, Clean Technol., 22(4), 211 (2016)
DieselNet Technology: Emission Aftertreatment/Diesel Filter Systems/CRT Filter, https://www.dieselnet.com/tech/dpf_crt.php.
Jeong H, Bae J, Han JW, Lee H, ACS Catal, 7(10), 7097 (2017)
Bekki S, J. Geophys. Res., 102(10), 751 (1997)
Hirata H, Kakanohara M, Ibe M, “Exhaust gas Purification System Utilizing Ozone,” US Patent 8,051,643 B2(2011).
Okubo M, Kuroki T, Miyairi Y, Yamamoto T, “Lowtemperature Soot Incineration of Diesel Particulate Filter Using Remote Nonthermal Plasma Induced by a Pulsed Barrier Discharge,” 40(6), 1504-1512(2004).
Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T, Plasma Chem. Plasma Process., 28(2), 173 (2008)
Itoh Y, Sakakibara Y, Shinjoh H, RSC Advances, 4, 19144 (2014)
Jeguirim M, Tschamber V, Brilhac JF, Ehrburger P, Fuel, 84(14-15), 1949 (2005)
Wang ZH, Zhou JH, Fan JR, Cen KF, Energy Fuels, 20(6), 2432 (2006)
Fino D, Bensaid S, Piumetti M, Russo N, Appl. Catal. A: Gen., 509, 75 (2016)
Diesel Net Technology: Emission Aftertreatment/Diesel Filter Systems/Catalyzed Diesel Filters, https://www.dieselnet.com/tech/dpf_cat.php.
Tighe CJ, Twigg MV, Hayhurst AN, Dennis JS, Ind. Eng. Chem. Res., 50(18), 10480 (2011)
Azambre B, Collura S, Trichard JM, Weber JV, Appl. Surf. Sci., 253(4), 2296 (2006)
Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101 (2016)
Mul G, Neeft JPA, Kaptejin F, Moulijn JA, Carbon, 36(9), 1269 (1998)
Jeong JW, News Info. Chem. Eng., 33(4), 431 (2015)
USDRIVE Workshop Report (2012): https://www.pnnl.gov/main/publications/external/technical_ Reports/PNNL-22815.pdf.
DieselNet Technology: Emission Aftertreatment/Catalyst Technologies/Diesel Catalysts/Diesel Oxidation Catalyst, https://www.dieselnet.com/tech/cat_doc.php.
Park SH, Lee KY, Cho SJ, Clean Technol., 22(4), 211 (2016)
DieselNet Technology: Emission Aftertreatment/Diesel Filter Systems/CRT Filter, https://www.dieselnet.com/tech/dpf_crt.php.
Jeong H, Bae J, Han JW, Lee H, ACS Catal, 7(10), 7097 (2017)
Bekki S, J. Geophys. Res., 102(10), 751 (1997)
Hirata H, Kakanohara M, Ibe M, “Exhaust gas Purification System Utilizing Ozone,” US Patent 8,051,643 B2(2011).
Okubo M, Kuroki T, Miyairi Y, Yamamoto T, “Lowtemperature Soot Incineration of Diesel Particulate Filter Using Remote Nonthermal Plasma Induced by a Pulsed Barrier Discharge,” 40(6), 1504-1512(2004).
Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T, Plasma Chem. Plasma Process., 28(2), 173 (2008)
Itoh Y, Sakakibara Y, Shinjoh H, RSC Advances, 4, 19144 (2014)
Jeguirim M, Tschamber V, Brilhac JF, Ehrburger P, Fuel, 84(14-15), 1949 (2005)
Wang ZH, Zhou JH, Fan JR, Cen KF, Energy Fuels, 20(6), 2432 (2006)
Fino D, Bensaid S, Piumetti M, Russo N, Appl. Catal. A: Gen., 509, 75 (2016)
Diesel Net Technology: Emission Aftertreatment/Diesel Filter Systems/Catalyzed Diesel Filters, https://www.dieselnet.com/tech/dpf_cat.php.
Tighe CJ, Twigg MV, Hayhurst AN, Dennis JS, Ind. Eng. Chem. Res., 50(18), 10480 (2011)
Azambre B, Collura S, Trichard JM, Weber JV, Appl. Surf. Sci., 253(4), 2296 (2006)
Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101 (2016)
Mul G, Neeft JPA, Kaptejin F, Moulijn JA, Carbon, 36(9), 1269 (1998)