ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 24, 2018
Accepted September 7, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델

Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena

전남대학교 화학공학부, 61186 광주광역시 북구 용봉로 77
School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
Korean Chemical Engineering Research, October 2018, 56(5), 767-772(6), 10.9713/kcer.2018.56.5.767 Epub 5 October 2018
downloadDownload PDF

Abstract

전기유변(ER) 현상을 위해 제시된 메커니즘들이 중에서 정전기 분극 모델과 전도 모델이 이론적인 측면에서 적합한 것으로 알려져 있다. 그러나 이 모델들은 자체적인 제한들 때문에 효과적인 ER 액체의 개발에 적절한 도움이 되지 못했다. 이 문제를 해결하기 위해 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델을 개발하였다. 확장한 Maxwell-Wagner 분극 모델은 항복응력의 전기장 주파수 및 전기장 크기의 비제곱 의존성을 설명할 수 없는 정전기 분극 모델의 단점과 전기장 하에서의 입자의 미세 구조 변화를 예측할 수 없는 전도 모델의 단점을 해결할 수 있었다. 또한 이 모델은 정전기 분극 모델과 전도 모델에서 예측할 수 없었던 항복응력에의 입자 전도도 영향을 고려할 수 있는 장점도 있어 효과적인 ER 액체의 개발에 기여하리라 판단된다.
Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.

References

Winslow WM, J. Appl. Phys., 20, 1137 (1949)
Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
Shulman ZP, Gorodkin RG, Korobko EV, J. Non-Newton. Fluid Mech., 8, 29 (1981)
Hao T, Adv. Colloid Interface Sci., 97, 1 (2002)
Liu YD, Choi HJ, Soft Matter, 8, 11961 (2012)
Block H, Kelly JP, J. Phys. D-Appl. Phys., 21, 1661 (1988)
Kim DH, Kim YD, J. Ind. Eng. Chem., 13(6), 879 (2007)
Filisko FE, Razdilowski LH, J. Rheol., 34, 539 (1990)
Otsubo Y, Sakine M, Katayama S, J. Colloid Interface Sci., 150, 324 (1992)
Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 168, 568 (1996)
Shin K, Kim D, Cho JC, Lim HS, Kim JW, Suh KD, J. Colloid Interface Sci., 374, 18 (2012)
Noh J, Yoon CM, Jang J, J. Colloid Interface Sci., 470, 237 (2016)
Lengalova A, Pavlinek V, Saha P, Stejskal J, Quadrat O, J. Colloid Interface Sci., 258(1), 174 (2003)
Stangroom JE, J. Stat. Phys., 64, 1059 (1991)
Kim YD, J. Colloid Interface Sci., 236(2), 225 (2001)
Klass DL, Martinek TW, J. Appl. Phys., 38, 67 (1967)
Klingenberg DJ, Zukoski CF, Langmuir, 6, 15 (1990)
Davis LC, Ginder JM, Progress in Electrorheology, ed. New York, Plenum, 107-111(1995).
Foulc JN, Atten P, Felici N, J. Electrostatics, 33, 103 (1994)
Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng., R17, 57 (1996)
Von Hippel AR, Dielectric Materials and Applications, Cambridge and Wiley, New York(1954).
Kim YD, Park DH, Colloid Polym. Sci., 280, 828 (2002)
Onsagar L, J. Chem. Phys., 2, 599 (1934)
Klingenberg DJ, Dierking D, Zukoski CF, J. Chem. Soc.-Faraday Trans., 87, 425 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로