Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2018
Accepted October 30, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용
Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries
충북대학교 공업화학과, 28644 충청북도 청주시 서원구 충대로1
Department of Engineering Chemistry, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea
Korean Chemical Engineering Research, December 2018, 56(6), 819-825(7), 10.9713/kcer.2018.56.6.819 Epub 4 December 2018
Download PDF
Abstract
본 연구는 α-Fe2O3 중공입자로 구성된 다공성 1차원 나노구조체를 전기방사 공정 및 두단계의 후 열처리 과정을 통해 주형법과 커켄달 효과를 동시 적용하여 합성했다. 열처리 과정 중, 수 nm의 치밀한 Fe 금속입자는 커켄달 효과에 의해 중공구조를 갖는 α-Fe2O3 입자로 최종 변환되었다. 또한, 전기방사 용액에 첨가한 PS 나노비드는 첫 열처리 과정 중 분해되어 구조체 내 수많은 기공을 형성, 환원 및 산화를 위한 가스들이 구조체 내부로 원활히 침투될 수 있는 역할을 했다. 최종 생성물인 α-Fe2O3 중공입자로 구성된 다공성 1차원 구조체를 리튬 이차전지의 음극활물질로 적용한 결과, 1.0 A g-1의 높은 전류밀도에도 불구하고 30 사이클 후 776 mA h g-1의 높은 방전 용량을 나타냈다. 이와 같은 우수한 리튬 저장특성은 본 구조체를 구성하는 중공형 α-Fe2O3 입자와 입자들 사이의 나노기공으로부터 기인한 결과이다. 본 연구에서 제안한 중공 입자로 구성된 다공성 1차원 나노구조체 합성 방법은 다양한 전이금속 화합물 조성에 적용 가능하므로 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.
Porous nanofibers comprising hollow α-Fe2O3 nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured α-Fe2O3 nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow α-Fe2O3 nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of 1.0 A g.1 was 776 mA h g-1. The good lithium ion storage property was attributed to the synergetic effects of the hollow α-Fe2O3 nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.
References
Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47(16), 2930 (2008)
Sun Y, Liu N, Cui Y, Nat. Energy, 1(7), 16071 (2016)
Yu SH, Lee SH, Lee DJ, Sung YE, Hyeon T, Small, 12(16), 2146 (2016)
Jayaraman S, Aravindan V, Suresh Kumar P, Chui Ling W, Ramakrishna S, Madhavi S, ACS Appl. Mater. Interfaces, 6(11), 8660 (2014)
Zhang L, Zhang GQ, Wu HB, Yu L, Lou XW, Adv. Mater., 25(18), 2589 (2013)
Wu HB, Zhang G, Yu L, Lou XWD, Nanoscale Horizons, 1(1), 27 (2016)
Park SK, Lee J, Bong S, Jang B, Seong KD, Piao Y, ACS Appl. Mater. Interfaces, 8(30), 19456 (2016)
Dou P, Cao Z, Zheng J, Wang C, Xu X, J. Alloy. Compd., 685, 690 (2016)
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
Son Y, Son Y, Choi M, Ko M, Chae S, Park N, Cho J, Nano Lett., 15(10), 6914 (2015)
Wang QM, Chen SG, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei ZD, Adv. Mater., 28(48), 10673 (2016)
Park GD, Cho JS, Kang YC, Nanoscale, 7(40), 16781 (2015)
Cho JS, Hong YJ, Kang YC, ACS nano, 9(4), 4026 (2015)
Li L, Li Z, Fu W, Li F, Wang J, Wang W, J. Alloy. Compd., 647, 105 (2015)
Shapi M, Hesso A, J. Anal. Appl. Pyrolysis, 18(2), 143 (1990)
Liu Y, Liu Q, Gu J, Kang D, Zhou F, Zhang W, Wu Y, Zhang D, Carbon, 64, 132 (2013)
Oya A, Marsh H, J. Mater. Sci., 17(2), 309 (1982)
Jeong SY, Park SK, Kang YC, Cho JS, Chem. Eng. J., 351, 559 (2018)
Olmos D, Martin E, Gonzalez-Benito J, Phys. Chem. Chem. Phys., 16(44), 24339 (2014)
Cho JS, Kang YC, Small, 11, 4673 (2015)
El Mel AA, Nakamura R, Bittencourt C, Beilstein J. Nanotechnol., 6, 1348 (2015)
Cho JS, Kang YC, ACS Appl. Mater. Interfaces, 8(6), 3800 (2016)
Zhang X, Liu H, Petnikota S, Ramakrishna S, Fan HJ, J. Mater. Chem. A, 2(28), 10835 (2014)
Cho JS, Park JS, Jeon KM, Kang YC, J. Mater. Chem. A, 5(21), 10632 (2017)
Zhang G, Wu HB, Hoster HE, Lou XWD, Energy Environ. Sci., 7(1), 302 (2014)
Sun Y, Liu N, Cui Y, Nat. Energy, 1(7), 16071 (2016)
Yu SH, Lee SH, Lee DJ, Sung YE, Hyeon T, Small, 12(16), 2146 (2016)
Jayaraman S, Aravindan V, Suresh Kumar P, Chui Ling W, Ramakrishna S, Madhavi S, ACS Appl. Mater. Interfaces, 6(11), 8660 (2014)
Zhang L, Zhang GQ, Wu HB, Yu L, Lou XW, Adv. Mater., 25(18), 2589 (2013)
Wu HB, Zhang G, Yu L, Lou XWD, Nanoscale Horizons, 1(1), 27 (2016)
Park SK, Lee J, Bong S, Jang B, Seong KD, Piao Y, ACS Appl. Mater. Interfaces, 8(30), 19456 (2016)
Dou P, Cao Z, Zheng J, Wang C, Xu X, J. Alloy. Compd., 685, 690 (2016)
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
Son Y, Son Y, Choi M, Ko M, Chae S, Park N, Cho J, Nano Lett., 15(10), 6914 (2015)
Wang QM, Chen SG, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei ZD, Adv. Mater., 28(48), 10673 (2016)
Park GD, Cho JS, Kang YC, Nanoscale, 7(40), 16781 (2015)
Cho JS, Hong YJ, Kang YC, ACS nano, 9(4), 4026 (2015)
Li L, Li Z, Fu W, Li F, Wang J, Wang W, J. Alloy. Compd., 647, 105 (2015)
Shapi M, Hesso A, J. Anal. Appl. Pyrolysis, 18(2), 143 (1990)
Liu Y, Liu Q, Gu J, Kang D, Zhou F, Zhang W, Wu Y, Zhang D, Carbon, 64, 132 (2013)
Oya A, Marsh H, J. Mater. Sci., 17(2), 309 (1982)
Jeong SY, Park SK, Kang YC, Cho JS, Chem. Eng. J., 351, 559 (2018)
Olmos D, Martin E, Gonzalez-Benito J, Phys. Chem. Chem. Phys., 16(44), 24339 (2014)
Cho JS, Kang YC, Small, 11, 4673 (2015)
El Mel AA, Nakamura R, Bittencourt C, Beilstein J. Nanotechnol., 6, 1348 (2015)
Cho JS, Kang YC, ACS Appl. Mater. Interfaces, 8(6), 3800 (2016)
Zhang X, Liu H, Petnikota S, Ramakrishna S, Fan HJ, J. Mater. Chem. A, 2(28), 10835 (2014)
Cho JS, Park JS, Jeon KM, Kang YC, J. Mater. Chem. A, 5(21), 10632 (2017)
Zhang G, Wu HB, Hoster HE, Lou XWD, Energy Environ. Sci., 7(1), 302 (2014)