ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 27, 2018
Accepted October 4, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions

전북대학교 자원에너지공학과, 54896 전라북도 전주시 덕진구 백제대로 567 1한국기계연구원 환경기계연구실, 34103 대전광역시 유성구 가정북로 156
Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea 1Environment Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Korea
donald@jbnu.ac.kr
Korean Chemical Engineering Research, December 2018, 56(6), 856-863(8), 10.9713/kcer.2018.56.6.856 Epub 4 December 2018
downloadDownload PDF

Abstract

순산소 순환유동층 보일러에서 탈황을 위해 이용되는 석회석의 재탄산화 거동을 분석하기 위하여, 상용 순환유동층 보일러에서 이용되는 석회석 4종의 재탄산화 반응 특성을 열중량분석기(TGA-N1000)에서 고농도의 CO2 가스를 이용하여 분석하였다. 생석회의 재탄산화 반응은 반응온도(600~900 °C), 석회석의 CaCO3 함량(77~95%) 등의 조건에 따른 질량 변화를 통해 고찰되었다. 600~800 °C의 온도 영역에서는 반응 온도가 증가함에 따라 전환율이 증가하였고, 850~900 °C 에서는 반응 온도가 증가함에 따라 전환율이 감소하는 경향이 발견되었다. CaCO3 함량의 경우, 870 °C의 반응온도에서 뚜렷한 전환율의 차이를 보였다. 또한 기-고체반응속도 모델들에 적용하여 석회석의 재탄산화 반응을 모사하는 반응속도식을 제시하였다.
In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of CO2. Effect of reaction temperature (600~900 °C) and CaCO3 content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of 800 °C, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over 800 °C. In the case of CaCO3 content, the conversion was remarkably different at 870 °C. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

References

Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
Lee SH, Kim JM, Eom WH, Ryi SK, Park JS, Baek LH, Chem. Eng. J., 207-208, 521 (2012)
Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523 (2016)
Garcia-Labiano F, Rufas A, de Diego LF, de las Obras-Loscertales M, Gayan P, Abad A, Adanez J, Fuel, 90(10), 3100 (2011)
Jia L, Tan Y, Anthony EJ, Energy Fuels, 24, 910 (2010)
Tian L, Yang W, Chen Z, Wang X, Yang H, Chen H, J. Energy Inst., 89(2), 264 (2016)
Li W, Li S, Xu M, Wang X, J. Energy Inst., 91(3), 358 (2018)
Liljedahl G, Turek D, Nsakala N, Mohn N, Fout T, In:Proceedings of the 31st International Technical Conference on Coal Utilization & Fuel Systems.
Ramezani M, Tremain P, Doroodchi E, Moghtaderi B, E5nergy Procedia, 114, 259 (2017)
Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557 (2015)
Lee SH, Lee JM, KEPCO J., 2, 211 (2016)
Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1 (2015)
Chen HC, Zhao CS, Chem. Eng. Technol., 39(6), 1058 (2016)
Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548 (2015)
Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331 (2015)
Wang CB, Jia LF, Tan YW, Anthony EJ, Fuel, 87(7), 1108 (2008)
Wang CB, Jia LF, Tan YW, Chem. Eng. Technol., 34(10), 1685 (2011)
Symonds RT, Lu DY, Macchi A, Hughes RW, Anthony EJ, Chem. Eng. Sci., 64(15), 3536 (2009)
Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
Wen C, Ind. Eng. Chem., 60, 34 (1968)
Ishida M, Wen C, AIChE J., 14, 311 (1968)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1) (1985)
Sun P, Grace JR, Lim CJ, Anthony EJ, Chem. Eng. J., 63, 47 (2008)
Abanades JC, Alvarez D, Energy Fuels, 17(2), 308 (2003)
de las Obras-Loscertales M, de Diego LF, Garcia-Labiano F, Rufas A, Abad A, Gayan P, Adanez J, Fuel, 137, 384 (2014)
Kim YB, Gwak YR, Keel SL, Yun JH, Lee SH, Che. Eng. J., https://doi.org/10.1016/j.cej.2018.08.036.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로