Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 14, 2018
Accepted October 22, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구
CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor
Seong Hye Son
Myung Won Seo1†
Byung Wook Hwang1
Sung Jin Park1
Jung Hwan Kim1
Do Yeon Lee1
Kang Seok Go,1
Sang Goo Jeon1
Sung Min Yoon1
Yong Ku Kim1
Jae Ho Kim1
Ho Jeong Ryu1
Young Woo Rhee†
충남대학교 에너지과학기술대학원, 34134 대전광역시 유성구 대학로 99 1한국에너지기술연구원 기후변화연구본부, 34129 대전광역시 유성구 가정로 152
Graduate School of Energy Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea 1Clean Fuel Laboratory, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea
mwseo82@kier.re.kr
Korean Chemical Engineering Research, December 2018, 56(6), 871-877(7), 10.9713/kcer.2018.56.6.871 Epub 4 December 2018
Download PDF
Abstract
전 세계적으로 재생에너지의 비율이 증가함에 따라, 재생에너지로부터 생산되는 불연속적이고 간헐적인 에너지 저장 문제가 주목을 받고 있다. 다양한 에너지 저장 시스템(ESS) 중에서 CO2 메탄화 기술은 타 시스템에 비해 높은 저장 용량과 저장 기간으로 각광 받고 있다. CO2 메탄화 반응은 발열반응이며, 촉매가 낮은 온도 범위(250-500 °C)에서 높은 활성 및 메탄 선택도를 갖는다. 기존의 고정층 방식에 비하여 유동층 반응기는 높은 열전달 특성으로 인해 발열 반응에 적합하며, 열전달과 물질 전달이 유리한 장점을 갖고 있다. 본 연구에서는, 촉매 특성 평가를 위해 기포유동층 반응기(Diameter: 0.025 m, Height: 0.35 m)와 Ni/γ-Al2O3 (Ni 70% and γ-Al2O3 30%) 촉매를 사용하였다. 반응 조건은 H2/CO2 mole ratio: 4.0-6.0, 조업온도 300-420 °C, 조업 압력 1-9 bar 및 Uo/Umf 1-5이었다. 생성 가스의 조성은 NDIR를 통해 분석하였으며, CO2 전환율은 H2/CO2 ratio, 압력, 온도가 증가함에 따라 높아지는 경향을 보였다. 이에 반해 가스 유속이 빨라질수록 CO2 전환율은 떨어졌다. 최적의 운전 조건은 H2/CO2 ratio: 5, 조업온도 400 °C, 조업 압력 9 bar 및 1.4-3 Umf이었으며 이 때 CO2 전환율은 99.6%로 나타났다. 본 실험 촉매의 경우 장기 운전 시 촉매 성능 저하가없이 CO2 전환율이 일정하게 유지하는 것을 확인하였다.
Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. CO2 methanation is well known reaction that as a renewable energy storage system. CO2 methanation requires a catalyst to be active at relatively low temperatures (250-500 °C) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with Ni/γ-Al2O3 (Ni70%, and γ-Al2O330%) catalyst. The range of the reaction conditions were H2/CO2 mole ratio range of 4.0-6.0, temperature of 300-420 °C, pressure of 1-9 bar, and gas velocity (U0/Umf) of 1-5. As the H2/CO2 mole ratio, temperature and pressure increased, CO2 conversion increases at the experimental temperature range. However, CO2 conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum CO2 conversion of 99.6% was obtained with the operating condition as follows; H2/CO2 ratio of 5, temperature of 400 °C, pressure of 9 bar, and U0/Umf of 1.4-3.
References
Stangeland K, Kalai D, Li H, Yu Z, Energy Procedia, 105, 2022 (2017)
Meylan F, Moreau V, Erkman S, Energy Policy, 94, 366 (2016)
Meylan F, Piguet F, Erkman S, J. Energy Storage, 11, 16 (2017)
Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
Blanco H, Faaij A, Renew. Sust. Energ. Rev., 81, 1049 (2017)
Sabatier. New methane synthesis(1902).
Miao B, Ma KSS, Wang X, Su H, Chan HS, Catal. Sci. Technol., 6, 4048 (2016)
Kim J, Kang S, Ryu J, Lee S, Kim S, Kim M, Clean Technol., 49, 491 (2011)
Schlereth D, Hinrichsen O, Chem. Eng. Res. Des., 92(4), 702 (2014)
Vannice M, J. Catal., 37, 449 (1975)
Kim S, Koh D, Korean J. Chem. Eng., 31, 65 (2013)
Yang JM, Choi JY, Kim YJ, Lee JD, Korean Chem. Eng. Res., 51(3), 319 (2013)
Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156 (2013)
Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
Koytsoumpa E, Karellas S, Renew. Sust. Energ. Rev., 94, 536 (2018)
Liu J, Cui DM, Yao CB, Yu J, Su FB, Xu GW, Fuel Process. Technol., 141, 130 (2016)
Seemann MC, Schildhauer TJ, Biollaz SMA, Stucki S, Wokaun A, Appl. Catal. A: Gen., 313(1), 14 (2006)
Olsbye U, Moen O, Slagtern A, Dahl IM, Appl. Catal. A: Gen., 228(1-2), 289 (2002)
Matsuo Y, Yoshinaga Y, Sekine Y, Tomishige K, Fujimoto K, Catal. Today, 63(2-4), 439 (2000)
Perkas N, Amirian G, Zhong ZY, Teo J, Gofer Y, Gedanken A, Catal. Lett., 130(3-4), 455 (2009)
Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359 (2014)
Wang QH, Rong N, Fan HT, Meng YJ, Fang MX, Cheng LM, Cen KF, Int. J. Hydrog. Energy, 39(11), 5781 (2014)
Jiajisn G, Yingli W, Yuan P, Dacheng H, Guangwen X, Fabing S, RSC Advances, 2, 2358 (2012)
Kopyscinski J, Schildhauer TJ, Biollaz SMA, Chem. Eng. Sci., 66(5), 924 (2011)
Kang SH, Kim JH, Ryu JH, Jeong KJ, Yoo YD, Kim KJ, Clean. Tech., 20, 57 (2014)
Ghaib K, Nitz K, Ben-Fares F, Chem. Bio. Eng. Rev., 6, 266 (2016)
Meylan F, Moreau V, Erkman S, Energy Policy, 94, 366 (2016)
Meylan F, Piguet F, Erkman S, J. Energy Storage, 11, 16 (2017)
Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
Blanco H, Faaij A, Renew. Sust. Energ. Rev., 81, 1049 (2017)
Sabatier. New methane synthesis(1902).
Miao B, Ma KSS, Wang X, Su H, Chan HS, Catal. Sci. Technol., 6, 4048 (2016)
Kim J, Kang S, Ryu J, Lee S, Kim S, Kim M, Clean Technol., 49, 491 (2011)
Schlereth D, Hinrichsen O, Chem. Eng. Res. Des., 92(4), 702 (2014)
Vannice M, J. Catal., 37, 449 (1975)
Kim S, Koh D, Korean J. Chem. Eng., 31, 65 (2013)
Yang JM, Choi JY, Kim YJ, Lee JD, Korean Chem. Eng. Res., 51(3), 319 (2013)
Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156 (2013)
Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
Koytsoumpa E, Karellas S, Renew. Sust. Energ. Rev., 94, 536 (2018)
Liu J, Cui DM, Yao CB, Yu J, Su FB, Xu GW, Fuel Process. Technol., 141, 130 (2016)
Seemann MC, Schildhauer TJ, Biollaz SMA, Stucki S, Wokaun A, Appl. Catal. A: Gen., 313(1), 14 (2006)
Olsbye U, Moen O, Slagtern A, Dahl IM, Appl. Catal. A: Gen., 228(1-2), 289 (2002)
Matsuo Y, Yoshinaga Y, Sekine Y, Tomishige K, Fujimoto K, Catal. Today, 63(2-4), 439 (2000)
Perkas N, Amirian G, Zhong ZY, Teo J, Gofer Y, Gedanken A, Catal. Lett., 130(3-4), 455 (2009)
Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359 (2014)
Wang QH, Rong N, Fan HT, Meng YJ, Fang MX, Cheng LM, Cen KF, Int. J. Hydrog. Energy, 39(11), 5781 (2014)
Jiajisn G, Yingli W, Yuan P, Dacheng H, Guangwen X, Fabing S, RSC Advances, 2, 2358 (2012)
Kopyscinski J, Schildhauer TJ, Biollaz SMA, Chem. Eng. Sci., 66(5), 924 (2011)
Kang SH, Kim JH, Ryu JH, Jeong KJ, Yoo YD, Kim KJ, Clean. Tech., 20, 57 (2014)
Ghaib K, Nitz K, Ben-Fares F, Chem. Bio. Eng. Rev., 6, 266 (2016)