ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 30, 2018
Accepted October 12, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

메틸렌블루와 바나듐을 활물질로 활용한 수계 유기 레독스 흐름 전지의 성능 평가

Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple

서울과학기술대학교 에너지환경대학원, 01811 서울특별시 노원구 공릉로 232
Graduate school of Energy and Environment, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
Korean Chemical Engineering Research, December 2018, 56(6), 890-894(5), 10.9713/kcer.2018.56.6.890 Epub 4 December 2018
downloadDownload PDF

Abstract

본 연구에서는 염료 물질 중 하나인 메틸렌 블루(methylene blue)를 수계 레독스 흐름 전지의 활물질로 처음으로 도입하였다. Methylene blue의 레독스 전위는 pH가 높아짐에 따라 음의 방향으로 이동하는 것을 확인할 수 있었다. 이 methylene blue를 음극 활물질로 활용하고, 양극 활물질로는 바나듐(vanadium) 을 활용하여 산 전해질을 기반으로 셀성능 평가를 진행하였다. Methylene blue/V4+ 레독스 조합의 산 전해질에 대한 셀 전압은 0.45 V로 낮으며, Methyleneblue의 물에 대한 용해도 또한 0.12 M로 굉장히 낮다. 이에 따라 0.0015 M의 낮은 농도로 단전지 셀 성능을 평가하였으며, Nafion 212 멤브레인을 사용하여 0~0.8 V 컷-오프 전압으로 1 mA/cm2 전류밀도 하에서 4 cycle에서 충방전 효율 96.67%, 전압효율 88.83%, 에너지효율 85.87%, 방전 용량(0.0500 Ah·L-1)의 성능을 보였으며, 낮은 방전용량은 활물질의 낮은 농도에 의한 것이므로 활물질인 메틸렌 블루의 농도를 0.1 M로, 전류밀도는 10 mA/cm2로 더 높였을 때 4 cycle에서 CE 99%, VE 85%, EE 85%의 효율로 더 높은 방전 용량(3.8122 Ah·L-1)을 도출함을 확인할 수 있었다.
In this study, methylene blue which is one of dye materials was introduced as active material for aqueous redox flow battery. The redox potential of methylene blue was shifted to negative direction as pH increased. The full-cell performance was evaluated by using methylene blue as the negative active material and vanadium as the positive active material with acid supporting electrolytes. The cell voltage of methylene blue/V4+ is very low (0.45 V). In addition, the maximum solubility of methylene blue in water is only 0.12 M. Therefore, the cell test was performed with very low concentration (0.0015 M methylene blue, 0.15 M V4+) at first time. Cut-off voltage range was 0 to 0.8 V and 1 mA·cm-2 current density was adopted during cycling. As a result, current efficiency (CE) was 99.67%, voltage efficiency (VE), 88.83% and energy efficiency (EE) was 85.87% and discharge capacity was (0.0500 Ah·L-1) at 4 cycle. In addition, the cell test was performed with increased concentration (0.1 M methylene blue, 0.15 M V4+) with 10 mA·cm-2 current density, leading to higher discharge capacity (3.8122 Ah·L-1) with similar efficiency (CE=99%, VE=85%, EE=85% at 4 cycle).

References

Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189 (2007)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388 (2018)
Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970 (2013)
Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources, 39, 147 (1992)
Jeon JD, Yang HS, Shim J, Kim HS, Yang JH, Electrochim. Acta, 127, 397 (2014)
Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991)
Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27 (2013)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Jang JH, Jang, Kim H, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383 (2017)
Jung HY, Jeong S, Kwon Y, Electrochem. Soc., 163, A5090 (2016)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GS, Narayanan SR, J. Electrochem. Soc., 161, A1371 (2014)
Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nature Energy, 1, 16102 (2016)
Hu B, DeBruler C, Rhodes Z, Liu TL, J. American Chem. Soc., 139, 1207 (2017)
Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
Beh ES, De Porcellinis D, Gracia RL, Xia KT, Gordon RG, Aziz MJ, ACS Energy Lett., 2, 639 (2017)
Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
Karyakin AA, Strakhova AK, Karyakina EE, Varfolomeyev SD, Yatslmirsky AK, Synth. Met., 60, 289 (1993)
Wang W, Nie Z, Chen B, Chen F, Luo Q, Wei X, Xia GG, Skyllas-Kazacos M, Li L, Yang Z, Adv. Energy Mater., 2, 487 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로