Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2018
Accepted October 12, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사
Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor
(주)EG, 32710 충청남도 금산군 추부면 서대산로 459 1충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1 2충남대학교 응용화학공학과, 34134 대전광역시 유성구 대학로 99
EG Corporation, 459, Seodaesan-ro, Chubu-myeon, Geumsan-gun, Chungcheongnam-do, 32710, Korea 1Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea 2Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
nabk@chungbuk.ac.kr
Korean Chemical Engineering Research, December 2018, 56(6), 901-908(8), 10.9713/kcer.2018.56.6.901 Epub 4 December 2018
Download PDF
Abstract
흑연은 리튬이온전지에 사용 되는 대표적인 음극활물질이다. 그러나 최대 이론 용량이 372 mA h g-1으로 제한되기 때문에 고용량의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 실리콘의 최대 이론 용량은 4200 mA h g-1으로 흑연보다 높은 값을 나타내지만 부피 팽창이 400%로 크기 때문에 음극 소재 활물질로 바로 적용하기에는 적합하지 않다. 따라서 부피 팽창으로 인한 방전 용량의 감소를 최소화하기 위해 건식 방법으로 실리콘을 분쇄 하여 기계적 응력 및 반응상의 체적 변화를 감소시키고 입도 제어 된 실리콘 입자에 탄소를 코팅하여 체적의 변화를 억제하였다. 그리고 탄소 섬유를 입자 표면에 실타래처럼 성장시켜 2차적으로 부피 팽창을 제어하고 전기전도성을 개선하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 전기화학적 특성을 평가 하였다. 본 연구에서는 실리콘의 수명 특성을 향상시켜 음극 소재 활물질로 사용 할 수 있는 합성 방법에 대하여 알아보았다.
Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to 372 mA h g-1, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is 4200 mA h g-1, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.
Keywords
References
Dmitri BM, Victor EB, Rusli, Cesare S, Nano Convergence, 2(16), (2015).
Lee SW, Lee HW, Ryu I, Nix WD, Gao H, Cui Y, Nat. Commun., 6(7533) (2015)
Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z, J. Mater. Chem., 22(16), 7724 (2012)
Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh SA, Picraux ST, Zhi L, J. Am. Chem. Soc., 7(2), 1437 (2013)
Jang SM, Miyawaki J, Tsuji M, Mochida I, Yoon SH, Carbon, 47(15), 3383 (2009)
Jung DH, Chun YN, J. Ind. Eng. Chem., 18(6), 575 (2007)
Eeom MJ, Hahn TJ, Lee HK, Choi SM, Kosco, 18(3), 9 (2013)
Britton PF, Sheehan ME, Schneider PA, Powder Technol., 165(3), 153 (2006)
Li SQ, Yan JH, Li RD, Chi Y, Cen KF, Powder Technol., 126(3), 217 (2002)
Dimov N, Kugino S, Yoshio M, Electrochim. Acta, 48(11), 1579 (2003)
Kim TR, Wu JY, Hu Q, Li. Kim MS, Carbon Letters, 8(4), 335 (2007)
Zhang ZL, Zhang MJ, Wang YH, Tan QQ, Lv X, Zhong ZY, Li H, Su FB, Nanoscale, 5(12), 5384 (2013)
Jiang T, Zhang SC, Lin RX, Liu GR, Liu WB, Int. J. Electrochem. Sc., 8, 9644 (2013)
Liu HP, Qiao WM, Zhan L, Ling LC, New Carbon Mater., 24(2), 124 (2009)
Guo LP, Yoon WY, Kim BK, Electron Mater. Lett., 8(4), 405 (2012)
Kim YJ, Lee HJ, Lee SW, Cho BW, Park CR, Carbon, 43(1), 163 (2005)
Zhang ZL, Wang YH, Ren WF, Tan QQ, Chen YF, Li H, Zhong ZY, Su FB, Angew. Chem.-Int. Edit., 126, 5265 (2014)
Yoon SH, Park CW, Yang HJ, Korai YZ, Mochida IS, Baker RK, Rodriguez NM, Carbon, 42(1), 21 (2004)
Si Q, Hanai K, Ichikawa T, Hirano A, Imanishi N, Takeda Y, Yamamoto O, J. Power Sources, 195(6), 1720 (2010)
Lee SW, Lee HW, Ryu I, Nix WD, Gao H, Cui Y, Nat. Commun., 6(7533) (2015)
Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z, J. Mater. Chem., 22(16), 7724 (2012)
Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh SA, Picraux ST, Zhi L, J. Am. Chem. Soc., 7(2), 1437 (2013)
Jang SM, Miyawaki J, Tsuji M, Mochida I, Yoon SH, Carbon, 47(15), 3383 (2009)
Jung DH, Chun YN, J. Ind. Eng. Chem., 18(6), 575 (2007)
Eeom MJ, Hahn TJ, Lee HK, Choi SM, Kosco, 18(3), 9 (2013)
Britton PF, Sheehan ME, Schneider PA, Powder Technol., 165(3), 153 (2006)
Li SQ, Yan JH, Li RD, Chi Y, Cen KF, Powder Technol., 126(3), 217 (2002)
Dimov N, Kugino S, Yoshio M, Electrochim. Acta, 48(11), 1579 (2003)
Kim TR, Wu JY, Hu Q, Li. Kim MS, Carbon Letters, 8(4), 335 (2007)
Zhang ZL, Zhang MJ, Wang YH, Tan QQ, Lv X, Zhong ZY, Li H, Su FB, Nanoscale, 5(12), 5384 (2013)
Jiang T, Zhang SC, Lin RX, Liu GR, Liu WB, Int. J. Electrochem. Sc., 8, 9644 (2013)
Liu HP, Qiao WM, Zhan L, Ling LC, New Carbon Mater., 24(2), 124 (2009)
Guo LP, Yoon WY, Kim BK, Electron Mater. Lett., 8(4), 405 (2012)
Kim YJ, Lee HJ, Lee SW, Cho BW, Park CR, Carbon, 43(1), 163 (2005)
Zhang ZL, Wang YH, Ren WF, Tan QQ, Chen YF, Li H, Zhong ZY, Su FB, Angew. Chem.-Int. Edit., 126, 5265 (2014)
Yoon SH, Park CW, Yang HJ, Korai YZ, Mochida IS, Baker RK, Rodriguez NM, Carbon, 42(1), 21 (2004)
Si Q, Hanai K, Ichikawa T, Hirano A, Imanishi N, Takeda Y, Yamamoto O, J. Power Sources, 195(6), 1720 (2010)