Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 20, 2018
Accepted November 26, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
산소 분리를 위한 La0.6Sr0.4Ti0.3Fe0.7O3-δ가 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 이온전도성 분리막에서 Cr 불순물의 온도 의존성
Temperature Dependence of Cr Impurity in La0.6Sr0.4Ti0.3Fe0.7O3-δ Coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ Ion Conducting Membrane for oxygen Separation
동국대학교 화공생물공학과, 04620 서울특별시 중구 필동로 1길 30
Department of Chemical and Biochemical Engineering, Dongguk university, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Korea
pjhoon@dongguk.edu
Korean Chemical Engineering Research, February 2019, 57(1), 11-16(6), 10.9713/kcer.2019.57.1.11 Epub 31 January 2019
Download PDF
Abstract
높은 산소 분리 특성과 CO2에 대한 안정성을 보인 La0.6Sr0.4Ti0.3Fe0.7O3-δ(LSTF)가 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) 분리막을 bench 규모의 장치에 적용하여 산소 투과 실험을 수행 하였다. 또한 실험실 규모 장치와 bench 규모 장치의 분리막 반응기 내 온도 구배에 따라서 분리막을 3영역으로 나누어 각각 비교 분석하였다. 900 °C까지 온도 범위에서 산소 투과 실험을 진행하면서 Cr 침적의 온도 의존성을 조사하였다. 그 결과 실험실 장치에서 측정한 산소 투과율인 3.79 ml/min·cm2에 비해 현저히 낮은 2.37 ml/min·cm2를 확인했다. 이와 같은 산소 투과율의 감소는 XRD와 SEM/EDS 분석을 통하여 분리막 반응기의 합금 재질에서 방출되어 나온 기상 Cr의 분리막 표면 침적에 의한 것임을 밝혀냈다. 특히 중온 영역에서 많은 양의 Cr이 발견되었다.
La0.6Sr0.4Ti0.3Fe0.7O3-δ(LSTF) coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) membranes which has properties of high oxygen permeability and stability to CO2 were applied to a bench scale apparatus to conduct oxygen permeation experiments. Also, the membranes of the laboratory and the bench scale device were divided into three regions according to the temperature gradient in the membrane reactor for comparative analysis. While oxygen permeation experiment were conducted up to 900 °C, temperature dependence of Cr deposition was investigated. As a result, it was confirmed that the oxygen permeability was 2.37 ml/min·cm2, which was significantly lower than 3.79 ml/min·cm2 measured in the laboratory apparatus. It was found through XRD and SEM/EDS analysis that the decrease in oxygen permeability was originated from the deposition of gaseous Cr on the membrane surface released from the alloy material of the housing. In particular, a large amount of Cr was found in the medium temperature region.
Keywords
References
Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, da Costa JCD, J. Membr. Sci., 320(1-2), 13 (2008)
Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177 (2000)
Park JH, Magnone E, Kim JP, Choi SH, Korean J. Chem. Eng., 29(2), 235 (2012)
Wang HH, Cong Y, Yang WS, J. Membr. Sci., 210(2), 259 (2002)
Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF, J. Membr. Sci., 163(2), 307 (1999)
Lee SW, Kim EJ, Lee HJ, Park JH, Korean Chem. Eng. Res., 56(3), 297 (2018)
Gindorf C, Singheiser L, Hilpert K, J. Phys. Chem. Solids, 66, 384 (2005)
Stanislowski M, Froitzheim J, Niewolak L, Quadakkers WJ, Hilpert K, Markus T, Singheiser L, J. Power Sources, 164(2), 578 (2007)
Kim YM, Chen XB, Jiang SP, Bae J, J. Electrochem. Soc., 159(2), B185 (2012)
Yang Z, Harvey AS, Gauckler LJ, Scripta Materialia, 61, 1083 (2009)
Park JH, Kim JP, Son SH, Energy Procedia, 1, 369 (2009)
Park JH, Kim KY, Park SD, Desalination, 245(1-3), 559 (2009)
Kim JP, Magnone E, Park JH, Lee Y, J. Membr. Sci., 403, 188 (2012)
Kim JP, Park JH, Magnone E, Lee Y, Mater. Lett., 65, 2168 (2011)
Kim JP, Park JH, Lee Y, Choi YJ, Membrane Journal, 21, 155 (2011)
Tan XY, Pang ZB, Li K, J. Membr. Sci., 310(1-2), 550 (2008)
Al-Hajji LA, Hasan MA, Zaki MI, Thermochim. Acta, 483(1-2), 8 (2009)
Kim JP, Magnone E, Seo MJ, Park JH, Mater. Lett., 93, 383 (2013)
Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177 (2000)
Park JH, Magnone E, Kim JP, Choi SH, Korean J. Chem. Eng., 29(2), 235 (2012)
Wang HH, Cong Y, Yang WS, J. Membr. Sci., 210(2), 259 (2002)
Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF, J. Membr. Sci., 163(2), 307 (1999)
Lee SW, Kim EJ, Lee HJ, Park JH, Korean Chem. Eng. Res., 56(3), 297 (2018)
Gindorf C, Singheiser L, Hilpert K, J. Phys. Chem. Solids, 66, 384 (2005)
Stanislowski M, Froitzheim J, Niewolak L, Quadakkers WJ, Hilpert K, Markus T, Singheiser L, J. Power Sources, 164(2), 578 (2007)
Kim YM, Chen XB, Jiang SP, Bae J, J. Electrochem. Soc., 159(2), B185 (2012)
Yang Z, Harvey AS, Gauckler LJ, Scripta Materialia, 61, 1083 (2009)
Park JH, Kim JP, Son SH, Energy Procedia, 1, 369 (2009)
Park JH, Kim KY, Park SD, Desalination, 245(1-3), 559 (2009)
Kim JP, Magnone E, Park JH, Lee Y, J. Membr. Sci., 403, 188 (2012)
Kim JP, Park JH, Magnone E, Lee Y, Mater. Lett., 65, 2168 (2011)
Kim JP, Park JH, Lee Y, Choi YJ, Membrane Journal, 21, 155 (2011)
Tan XY, Pang ZB, Li K, J. Membr. Sci., 310(1-2), 550 (2008)
Al-Hajji LA, Hasan MA, Zaki MI, Thermochim. Acta, 483(1-2), 8 (2009)
Kim JP, Magnone E, Seo MJ, Park JH, Mater. Lett., 93, 383 (2013)