ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 24, 2018
Accepted January 11, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process

대진대학교 생명화학부, 11159 경기도 포천시 호국로 1007
Department of Life Science and Chemistry, Daejin University, 1007, Hoguk-ro, Pocheon-si, Gyeonggi-do, 11159, Korea
shopark@daejin.ac.kr
Korean Chemical Engineering Research, February 2019, 57(1), 111-117(7), 10.9713/kcer.2019.57.1.111 Epub 31 January 2019
downloadDownload PDF

Abstract

기상으로 전달된 Ti 전구체가 열 플라즈마에서 고순도의 결정질 코어-TiO2로 합성됨과 동시에 기판에 바로 증착시킬 수 있는 공정을 제시한다. 제조된 코어-TiO2는 외부에 노출되지 않는 상태에서 원자층증착법(Atomic Layer Deposition, ALD)에 의하여 Al2O3로 코팅된다. 코어-TiO2와 코팅된 쉘-Al2O3의 형태학적 특징은 transmission electron microscope (TEM) 및 transmission electron microscope - energy dispersive spectroscopy (TEM-EDS)를 통해 분석하였다. 제조된 코어-TiO2/쉘-Al2O3 나노입자의 전기적 특성은 염료감응 태양전지(dye-sensitized solar cell, DSSC)의 작동 전극에 적용하여 평가하였다. Dynamic light scattering system (DLS), scanning electron microscope (SEM), X-ray Diffraction (XRD)을 통하여 코어-TiO2의 평균입도, 성장속도 및 결정구조의 무게분율을 분석한 결과, 평균입도는 17.1 nm, 코어박막의 두께는 20.1 μm이고 주 결정구조가 Anatase로 증착된 코어-TiO2/쉘-Al2O3 나노입자를 적용한 DSSC가 기존의 페이스트 방식으로 제작한 DSSC보다 더 높은 광효율을 보여준다. 기존의 페이스트방식을 활용한 DSSC의 에너지변환효율 4.99%에 비하여 선택적으로 조절된 코어-TiO2/쉘-Al2O3 나노입자를 작동전극으로 사용한 경우가 6.28%로 26.1% 더 높은 광효율을 보여준다.
This study proposed the fabrication and deposition of high purity crystalline core-TiO2/shell-Al2O3 nanoparticles. Morphological properties of core-TiO2 and coated shell-Al2O3 were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared core-TiO2/shell-Al2O3 nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of core-TiO2 were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The core-TiO2, which has a particle size of 17.1 nm, a thin film thickness of 20.1 μm and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the core-TiO2/shell- Al2O3 nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

References

O’Regan B, Gratzel M, Nature, 353, 737 (1991)
Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
Lee DY, Chung CW, Korean Chem. Eng. Res., 47(1), 105 (2009)
Park NG, Korean J. Chem. Eng., 27(2), 375 (2010)
Chen HW, Hsu CY, Chen JG, Lee KM, Wang CC, Huang KC, Ho KC, J. Power Sources, 195(18), 6225 (2010)
Kong FT, Dai SY, Wang KJ, Adv. Optoelectron., 1- 13(2007).
Kongkanand A, Martinez-Dominguez R, Kamat PV, Nano. Letters, 7(3), 676 (2007)
Brown P, Takechi K, Kamat PV, J. Phys. Chem. C, 112(12), 4776 (2008)
Yen CY, Lin YF, Liao SH, Weng CC, Huang CC, et al., Nanotechnology, 19, 1 (2008)
Yang CH, Chen HL, Chen CP, Liao SH, Hsiao HA, Chuang YY, Hsu HS, Wang TL, Shieh YT, Lin LY, Tsai YC, J. Electroanal. Chem., 631(1-2), 43 (2009)
Waita SM, Aduda BO, Mwabora JM, Granqvist CG, Lindquist SE, Niklasson GA, Hafeldt A, Boschloo G, J. Electroanal. Chem., 605(2), 151 (2007)
Dhungel SK, Park JG, Renew. Energy, 35(12), 2776 (2010)
Yoo B, Kim KJ, Bang SY, Ko MJ, Kim K, Park NG, J. Electroanal. Chem., 638(1), 161 (2010)
Paulsson H, Kloo L, Hagfeldt A, Boschloo G, J. Electroanal. Chem., 586(1), 56 (2006)
Parvez MK, Yoo GM, Kim JH, Ko MJ, Kim SR, Chem. Phys. Lett., 495(1-3), 69 (2010)
Villanueva-Cab J, Oskam G, Anta JA, Sol. Energy Mater. Sol. Cells, 94(1), 45 (2010)
Meng LJ, Ren T, Li C, Appl. Surf. Sci., 256(11), 3676 (2010)
Ganapathy V, Karunagaran B, Rhee SW, J. Power Sources, 195(15), 5138 (2010)
Hong YC, Kim JH, Bang CU, Uhm HS, Jpn. J. Appl. Phys., 46(9), 6027 (2007)
Lee Y, Kang M, Mater. Chem. Phys., 122(1), 284 (2010)
Wu JH, Xie GX, Lin JM, Lan Z, Huang ML, Huang YF, J. Power Sources, 195(19), 6937 (2010)
Tang ZY, Wu JH, Li QH, Lan Z, Fan LG, Lin JM, Huang ML, Electrochim. Acta, 55(17), 4883 (2010)
Lee Y, Chae J, Kang M, J. Ind. Eng. Chem., 16(4), 609 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로