ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 31, 2018
Accepted December 6, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

저장시설의 순간 전량 방출 시 방류벽의 월파 효과에 대한 수치모델링

Numerical Modeling for Effect on Bund Overtopping Caused by a Catastrophic Failure of Chemical Storage Tanks

아주대학교 환경안전공학과, 16499 경기도 수원시 영통구 월드컵로 206
Department of Environmental and Safety Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Korea
Korean Chemical Engineering Research, February 2019, 57(1), 42-50(9), 10.9713/kcer.2019.57.1.42 Epub 31 January 2019
downloadDownload PDF

Abstract

국내 산업이 발전함에 따라 유해화학물질의 사용이 급속도로 증가하고 있고, 이에 따른 화학사고 역시 증가하고 있다. 대부분의 화학사고는 저장시설에서 화학물질의 누출로 인해 발생하지만, 갑작스러운 고온·고압으로 인해 저장시설이 파열됨으로써 내부의 물질이 순간적으로 방출되는 사고 역시 발생하고 있다. 이것을 catastrophic failure라고 부르며 그 빈도는 매우 낮지만, 발생했을 때 피해 규모는 매우 크다. 국내에서는 2013년 울산의 한 현장에서 물탱크의 파열로 인해 3명의 사망자를 포함한 15명의 사상자가 발생하였고, 전 세계적으로 1919년부터 2004년까지 저장시설의 순간 전량 방출 사고가 64건 발생하였다. 저장시설에서 위험물질이 누출될 경우 외부로의 확산을 방지하는 방류벽이 존재하지만, 저장시설의 파괴로 물질이 순간적으로 방출되는 경우 내부 물질이 방류벽 바깥으로 넘치는 현상이 발생한다. 이 를 월파 현상 또는 overtopping 이라 한다. 해외에서는 저장시설의 순간 전량 방출 사고에 따른 overtopping 효과를 실험을 통해 연구해왔다. 본 연구에서는 선행연구를 바탕으로 전산유체역학(CFD) 시뮬레이션을 이용하여 국내 규정을 준수하는 방류벽의 설계 조건별 overtopping 효과를 확인해 보았다. 그 결과, 방류벽 용량의 최소기준을 만족한 상태에서 높이가 높아지고 설비와의 거리가 가까워짐에 따라 내부 물질이 방류벽 외부로 빠져나가는 현상은 줄어들었다. 추가로 대기조건 및 물질의 종류, 방류벽 형상에 따른 overtopping의 효과를 확인함으로써, 순간 전량 방출 사고의 피해를 고려한 방류벽의 설계 방향 및 저감 대책을 제시하고자 한다.
As the industry develops in Korea, the use of hazardous chemicals is increasing rapidly and chemical accidents are increasing accordingly. Most of the chemical accidents are caused by leaks of hazardous chemicals, but there are also accidents in which all the substances are released instantaneously due to sudden high temperature/pressure or defection of the storage tanks. This is called catastrophic failure and its frequency is very low, but consequence is very huge when it occurs. In Korea, there were 15 casualties including three deaths due to catastrophic rupture of water tank in 2013, and 64 instances of failures from 1919 to 2004 worldwide. In case of catastrophic failure, it would be able to overflow outside the bund that reduces the evaporation rate and following consequence. This incident is called overtopping. Overseas, some researchers have been studying the amount of external overflow depending on bund conditions in the event of such an accident. Based on the previous research, this study identified overtopping fraction by condition of bund in accordance with Korea Chemicals Controls Act Using CFD simulation. As a result, as the height increases and the distance to the facility decreases while meeting the minimum standard of the bund capacity, the overtopping effect has decreased. In addition, by identifying the effects of overtopping according to atmospheric conditions, types of materials and shapes of bunds, this study proposes the design of the bund considering the effect of overtopping caused by catastrophic failure with different bund conditions.

References

Thyer AM, Jagger SF, Atherton W, Ash JW, Loss Prev. Bull., 205, 3 (2009)
Zhang B, Liu Y, Zhu W, Gopalaswami N, Mannan MS, Ind. Eng. Chem. Res., 56(42), 12227 (2017)
Pettit G, Waite P, I. Chem. E. Symposium Series., 149, 329 (2013)
Park KS, Kim TO, Kim JY, Yoo BH, Park DJ, Korean Journal of Hazardous Materials., 1(1), 15 (2013)
Atherton W, Health & Safety Executive. RESEARCH REPORT 333(2005).
Versteeg HK, Malalasekera W, An Introduction to Computational Fluid Dynamics The Finite Volume Method, 2nd ed., John Wiley & Sons Inc, New York(1995).
ANSYS Inc., ANSYS Fluent 15.0 Theory Guide(2013).
Kim SB, Korean Society of Safety., 27(3), 77 (2012)
Shin CH, Park JH, Crisisonomy., 12(1), 83 (2016)
NICS, “Technical Guideline on the Selection of the Accident Scenarios,” NICS(2014).
EPA, “RMP Consequence Analysis Guidance,” EPA(1996).
Park SH, Seo JH, J. Kiaebs, 10, 27 (2011)
https://www.symscape.com/polyhedral-tetrahedral-hexahedralmesh-comparison.
Lim H, Um K, Jung S, J. Loss Prev. Process Ind., 49, 636 (2017)
Kim HK, Yoon YH, Korean J. Air-Cond. Refrig. Eng., 15, 1095 (2013)
Walton ILW, “Containment Systems for the Prevention of Pollution,” ciria(2014).
API, “Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries,” ANSI/API Standard 780(2013).
Center for Chemical Process Safety, “Guidelines for Analyzing and Managing the Security Vulnerabilities of Fixed Chemical Sites,” CCPS(2003).
http://www.chemlocus.co.kr/news/pdfView/83265.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로