Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 11, 2019
Accepted January 22, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
입자 이동 제어를 위한 유전영동: 이론, 전극 구조 및 응용분야
Dielectrophoresis for Control of Particle Transport: Theory, Electrode Designs and Applications
서울과학기술대학교 화공생명공학과, 01811 서울특별시 노원구 공릉로 232
Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
hjkoo@seoultech.ac.kr
Korean Chemical Engineering Research, April 2019, 57(2), 149-163(15), 10.9713/kcer.2019.57.2.149 Epub 5 April 2019
Download PDF
Abstract
영구 또는 유도 쌍극자를 가지는 물질은 불균일한 전기장 하에서 전기장의 구배 방향을 따라 힘을 받게 되는데, 이 힘에 의한 물질의 이동을 유전영동(dielectrophoresis, DEP)이라 한다. DEP 힘의 크기와 방향은 입자와 매질의 유전율과 전도도, 그리고 가해지는 교류 전기장의 주파수에 의해 영향을 받게 되므로, 이러한 변수를 제어함으로써 입자의 이동을 정확하게 조작할 수 있다. 또한, 전기영동과는 달리 쌍극자가 유도되는 모든 입자에 적용이 가능하다는 장점이 있다. 이러한 DEP 기술은 미세 유체 공학은 물론 바이오 센서, 마이크로 칩 분야 등 다양한 분야에서 활용되고 있다. 본 논문은 먼저 DEP의 기본원리를 설명하고, DEP를 이용한 연구에서 주로 사용되는 대표적인 마이크로 전극의 구조에 대해 논의한다. 그리고, DEP의 대표적 응용분야인 입자의 분리 및 포집, 자기조립(self-assembly) 연구를 소개한다.
Under non-uniform electric field, a directional force along the electric field gradient is applied to matter having permanent or induced dipoles. The transport of particles by the directional force is called dielectrophoresis (DEP). Since the strength and direction of the DEP force depend on parameters, such as permittivity and conductivity of particles and surrounding media, and frequency of the applied AC electric field, particle can be precisely manipulated by controlling the parameters. Moreover, unlike electrophoresis, DEP can be applied to any particles where dipole is effectively induced by electric field. Such a DEP technique has been used in various fields, ranging from microfluidic engineering to biosensor and microchip research. This paper first describes the fundamentals of DEP, and discusses representative microelectrode designs used for DEP study. Then, exemplary applications of DEP, such as separation, capture and self-assembly of particles, are introduced.
References
Ali MAM, Kayani ABA, Majlis BY, Microfluidics and Nanofluidics; IntechOpen (2018).
Zborowski M, Chalmers JJ, Magnetophoresis: fundamentals and applications, (1999).
Munaz A, Shiddiky MJA, Nguyen NT, Biomicrofluidics, 12, 031501 (2018)
Jung JH, Han KH, Transactions of the Korean Society of Mechanical Engineers B, 32, 856(2008).
Reineck P, Wienken CJ, Braun D, Electrophoresis, 31(2), 279 (2010)
Pohl HA, J. Appl. Phys., 22, 869 (1951)
Voldman J, Annu. Rev. Biomed. Eng., 8, 425 (2006)
Li M, Li WH, Zhang J, Alici G, Wen W, J. Phys. D-Appl. Phys., 47, 063001 (2014)
Green HMANG, AC Electrokinetics: Colloids and Nanoparticles, 1st ed., Research Studies Pr Ltd, (2003).
Green NG, Morgan H, Milner JJ, J. Biochem. Biophys. Methods, 35, 89 (1997)
Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, 2626 (1997)
Lapizco-Encinas BH, Rito-Palomares M, Electrophoresis, 28(24), 4521 (2007)
Green NG, Ramos A, Morgan H, J. Phys. D-Appl. Phys., 33, 632 (2000)
Markx GH, Huang Y, Zhou XF, Pethig R, Microbiology, 140, 585 (1994)
Hughes MP, Morgan H, J. Phys. D-Appl. Phys., 31, 2205 (1998)
Bahrieh G, Erdem M, Ozgur E, Gunduz U, Kulah H, RSC Advances, 4, 44879 (2014)
Miled MA, El-Achkar CA, Sawan M, Proceedings of the 8th IEEE International NEWCAS Conference, June, Montreal (2010).
Adams T, Yang C, Gress J, Wimmer N, Minerick AR, Advances in Microfluidics; InTech (2012).
Crews N, Darabi J, Voglewede P, Guo F, Bayoumi A, Sens. Actuators B-Chem., 125, 672 (2007)
Yang L, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M, Bashir R, Lab Chip, 6, 896 (2006)
Auerswald J, Knapp HF, Microelectronic Engineering, 67, 879 (2003)
Li H, Zheng Y, Akin D, Bashir R, J. Microelectromech. Syst., 14, 103 (2005)
Sadeghian H, Hojjat Y, Soleimani M, J. Electrostatics, 86, 41 (2017)
Javanmard M, Emaminejad S, Dutton RW, Davis RW, Analytical chemistry, 84, 1432 (2012)
Yunus NAM, Nili H, Green NG, Electrophoresis, 34(7), 969 (2013)
Doh I, Cho YH, Sens. Actuators A-Phys., 121, 59 (2005)
Bakewell DJ, Morgan H, IEEE Transactions Nanobioscience, 5, 1 (2006)
Alazzam A, Stiharu I, Bhat R, Meguerditchian AN, Electrophoresis, 32(11), 1327 (2011)
Choi S, Park JK, Lab Chip, 5, 1161 (2005)
Zahn JD, Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics; 1st ed., Artech House, (2009).
Morales FFH, Duarte JE, Marti SJ, Ingenieria e Investigacion, 28, 116(2008).
Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, L41 (1997)
Fernadez-Morales FH, Duarte JE, Samitier-Marti J, Anais da Academia Brasileira de Ciencias, 80, 627(2008).
Pethig R, Huang Y, Wang XB, Burt JPH, J. Phys. D-Appl. Phys., 25, 881 (1992)
Yasukawa T, Yamada J, Shiku H, Mizutani F, Matsue T, Sens. Actuators B-Chem., 186, 9 (2013)
Zhu H, Lin X, Su Y, Dong H, Wu J, Biosens. Bioelectron., 63, 371 (2015)
Ramon-Azcon J, Yasukawa T, Mizutani F, Biosens. Bioelectron., 28, 443 (2011)
Yafouz B, Kadri NA, Ibrahim F, Sensors, 14, 6356 (2014)
Vahey MD, Voldman J, Analytical Chemistry, 80, 3135 (2008)
Yan S, Zhang J, Pan C, Yuan D, Alici G, Du H, Zhu Y, Li W, J.Micromechanics Microengineering, 25, 084010 (2015)
Zhang J, Yuan D, Zhao Q, Yan S, Tang SY, Tan SH, Guo J, Xia H, Nguyen NT, Li W, Sens. Actuators B-Chem., 267, 14 (2018)
Li H, Bashir R, Sens. Actuators B-Chem., 86, 215 (2002)
Yildizhan Y, Erdem N, Islam M, Martinez-Duarte R, Elitas M, Sensors, 17, 2691 (2017)
Morgan H, Hughes MP, Green NG, Biophys. J., 77, 516 (1999)
Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E, Lab Chip, 15, 1320 (2015)
Piacentini N, Mernier G, Tornay R, Renaud P, Biomicrofluidics, 5, 034122 (2011)
Imasato H, Yamakawa T, Eguchi M, Intelligent Automation & Soft Computing, 18, 139(2012).
Eguchi M, Imasato H, Yamakawa T, World Automation Congress, June, Mexico (2012).
Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI, Lab Chip, 11, 1118 (2011)
Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, et al., Proceedings of the National Academy of Sciences, 201700773 (2017).
Mattsson M, Gromov A, Dittmer S, Eriksson E, Nerushev OA, Campbell EEB, J. Nanosci. Nanotechnol., 7, 3431 (2007)
Chen Z, Wu Z, Tong L, Pan H, Liu Z, Analytical chemistry, 78, 8069 (2006)
Krupke R, Linden S, Rapp M, Hennrich F, Adv. Mater., 18(11), 1468 (2006)
Krupke R, Hennrich F, Lohneysen HV, Kappes MM, Science, 301, 344 (2003)
Dimaki M, Bøggild P, Nanotechnology, 15, 1095 (2004)
Mendes MJ, Schmidt HK, Pasquali M, J. Phys. Chem. B, 112(25), 7467 (2008)
Wu J, Jiao L, Antaris A, Choi CL, Xie L, Wu Y, Diao S, Chen C, Chen Y, Dai H, Small, 9, 4142 (2013)
Ye M, Gao J, Xiao Y, Xu T, Zhao Y, Qu L, Carbon, 125, 299 (2017)
Kim S, Kim SK, Sun P, Oh N, Braun PV, Nano letters, 17, 6893 (2017)
Kolmakov A, Dikin DA, Cote LJ, Huang J, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M, Nature nanotechnology, 6, 651 (2011)
chirmer KSU, Esrafilzadeh D, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG, J. Mater. Chem. B, 4, 1142 (2016)
Feng L, Chang Y, Zhong J, Jia DC, Scientific reports, 8, 10803 (2018)
Lee Y, Park YJ, Kim C, So JH, Yeom B, Koo HJ, Polymer (2019).
Hong SH, Shen TZ, Lee B, Song JK, Particle Particle Systems Characterization, 34, 160034 (2017)
Wijnhoven JEGJ, van't Zand DD, van der Beek D, Lekkerkerker HNW, Langmuir, 21(23), 10422 (2005)
Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO, Angewandte Chemie, 123, 3099 (2011)
Flickinger MC, Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 7 Volume Set; John Wiley & Sons, ISBN, 2010.
Harwood R, Int. Rev. Cytol., 38, 369 (1974)
Yang L, Analytical Letters, 45, 187 (2012)
Tomkins MR, Chow J, Lai Y, Docoslis A, Sens. Actuators B-Chem., 176, 248 (2013)
Enjoji T, Uchida S, Tochikubo F, Intelligent Automation Soft Computing, 18, 153 (2012)
Wang C, Madiyar F, Yu C, Li J, J. Biological Engineering, 11, 9 (2017)
Tran TTH, Nguyen NV, Nguyen NC, Bui TT, Duc TC, International Conference on Advanced Techologies for Communications (ATC), December Hanoi (2016).
He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J, Biosens. Bioelectron., 42, 460 (2013)
Xing X, Yobas L, IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), Jan, San Francisco (2014).
Patel S, Showers D, Vedantam P, Tzeng TR, Qian S, Xuan X, Biomicrofluidics, 69, 034102 (2012)
Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y, Anal. Chem., 76, 1571 (2004)
Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R, Anal. Chem., 83, 9579 (2011)
Huang SB, Liu SL, Li JT, Wu MH, Int. J. Automation Smart Technology, 4, 83 (2014)
Takahashi Y, Takeuchi S, Miyata S, 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC), July, Osaka (2013).
Uchida S, Nakao R, Asai C, Jin T, Shiine Y, Nishikawa H, Intelligent Automation & Soft Computing, 18, 165 (2012).
Lerche D, Bilsing R, Biorheology, 25, 245 (1988)
Hester JP, Kellogg RM, Mulzet AP, Kruger VR, McCredie KB, Freireich EJ, Blood, 54, 254 (1979)
Homsy A, van der Wal PD, Doll W, Schaller R, Korsatko S, Ratzer M, Ellmerer M, Pieber TR, Nicol A, De Rooij NF, Biomicrofluidics, 6, 012804 (2012)
Wang S, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U, Int. J. Nanomedicine, 7, 5019 (2012)
Kuan DH, Wu CC, Su WY, Huang NT, Scientific Reports, 8, 15345 (2018)
Hughes MP, Biomicrofluidics, 10, 032801 (2016)
Pommer MS, Zhang YT, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT, Electrophoresis, 29(6), 1213 (2008)
Siebman C, Velev OD, Slaveykova VI, Biosensors, 7, 4 (2017)
Yin MJ, Huang BB, Zhang AP, Tam HY, Ye XS, IEEE 15th International Conference on Nanotechology (IEEE-NANO), July, Rome (2015).
Mao Q, Fell CJ, Scully AD, Prog. Org. Coat., 76, 51 (2013)
Fukushima T, Ohara Y, Murugesan M, Bea JC, Lee KW, Tanaka T, Koyanagi M, IEEE 61th Electronic Components and Technology Conference (ECTC), June, Lake Buena Vista (2011).
Bhatt KH, Velev OD, Langmuir, 20(2), 467 (2004)
Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD, Science, 294, 1082 (2001)
Pescaglini A, Emanuele U, O'Riordan A, Iacopino D, J. Phys. Conference Series, 307, 012051 (2011)
Sarker BK, Shekhar S, Khondaker SI, ACS nano, 5, 6297 (2011)
An L, Friedrich C, Progress in Natural Science:Materials International, 23, 367(2013).
Wu PF, Lee GB, Advances in OptoElectronics (2011).
Seichepine F, Salomon S, Collet M, Guillon S, Nicu L, Larrieu G, Flahaut E, Vieu C, Nanotechnology, 23, 095303 (2012)
Suehiro J, Zhou G, Hara M, Sens. Actuators B-Chem., 105, 164 (2005)
Suehiro J, Zhou G, Imakiire H, Ding W, Hara M, Sens. Actuators B-Chem., 108, 398 (2005)
Suehiro J. Sano N, Zhou G, Imakiire H, Imasaka K, Hara M, J. Electrostatics, 64, 408 (2006)
Hashim U, Low FW, Liu WW, J. Nanomaterials, 2013, 139 (2013)
Wang J, Singh B, Park JH, Rathi S, Lee IY, Maeng S, Joh HI, Lee CH, Kim GH, Sens. Actuators B-Chem., 194, 296 (2014)
Zborowski M, Chalmers JJ, Magnetophoresis: fundamentals and applications, (1999).
Munaz A, Shiddiky MJA, Nguyen NT, Biomicrofluidics, 12, 031501 (2018)
Jung JH, Han KH, Transactions of the Korean Society of Mechanical Engineers B, 32, 856(2008).
Reineck P, Wienken CJ, Braun D, Electrophoresis, 31(2), 279 (2010)
Pohl HA, J. Appl. Phys., 22, 869 (1951)
Voldman J, Annu. Rev. Biomed. Eng., 8, 425 (2006)
Li M, Li WH, Zhang J, Alici G, Wen W, J. Phys. D-Appl. Phys., 47, 063001 (2014)
Green HMANG, AC Electrokinetics: Colloids and Nanoparticles, 1st ed., Research Studies Pr Ltd, (2003).
Green NG, Morgan H, Milner JJ, J. Biochem. Biophys. Methods, 35, 89 (1997)
Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, 2626 (1997)
Lapizco-Encinas BH, Rito-Palomares M, Electrophoresis, 28(24), 4521 (2007)
Green NG, Ramos A, Morgan H, J. Phys. D-Appl. Phys., 33, 632 (2000)
Markx GH, Huang Y, Zhou XF, Pethig R, Microbiology, 140, 585 (1994)
Hughes MP, Morgan H, J. Phys. D-Appl. Phys., 31, 2205 (1998)
Bahrieh G, Erdem M, Ozgur E, Gunduz U, Kulah H, RSC Advances, 4, 44879 (2014)
Miled MA, El-Achkar CA, Sawan M, Proceedings of the 8th IEEE International NEWCAS Conference, June, Montreal (2010).
Adams T, Yang C, Gress J, Wimmer N, Minerick AR, Advances in Microfluidics; InTech (2012).
Crews N, Darabi J, Voglewede P, Guo F, Bayoumi A, Sens. Actuators B-Chem., 125, 672 (2007)
Yang L, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M, Bashir R, Lab Chip, 6, 896 (2006)
Auerswald J, Knapp HF, Microelectronic Engineering, 67, 879 (2003)
Li H, Zheng Y, Akin D, Bashir R, J. Microelectromech. Syst., 14, 103 (2005)
Sadeghian H, Hojjat Y, Soleimani M, J. Electrostatics, 86, 41 (2017)
Javanmard M, Emaminejad S, Dutton RW, Davis RW, Analytical chemistry, 84, 1432 (2012)
Yunus NAM, Nili H, Green NG, Electrophoresis, 34(7), 969 (2013)
Doh I, Cho YH, Sens. Actuators A-Phys., 121, 59 (2005)
Bakewell DJ, Morgan H, IEEE Transactions Nanobioscience, 5, 1 (2006)
Alazzam A, Stiharu I, Bhat R, Meguerditchian AN, Electrophoresis, 32(11), 1327 (2011)
Choi S, Park JK, Lab Chip, 5, 1161 (2005)
Zahn JD, Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics; 1st ed., Artech House, (2009).
Morales FFH, Duarte JE, Marti SJ, Ingenieria e Investigacion, 28, 116(2008).
Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, L41 (1997)
Fernadez-Morales FH, Duarte JE, Samitier-Marti J, Anais da Academia Brasileira de Ciencias, 80, 627(2008).
Pethig R, Huang Y, Wang XB, Burt JPH, J. Phys. D-Appl. Phys., 25, 881 (1992)
Yasukawa T, Yamada J, Shiku H, Mizutani F, Matsue T, Sens. Actuators B-Chem., 186, 9 (2013)
Zhu H, Lin X, Su Y, Dong H, Wu J, Biosens. Bioelectron., 63, 371 (2015)
Ramon-Azcon J, Yasukawa T, Mizutani F, Biosens. Bioelectron., 28, 443 (2011)
Yafouz B, Kadri NA, Ibrahim F, Sensors, 14, 6356 (2014)
Vahey MD, Voldman J, Analytical Chemistry, 80, 3135 (2008)
Yan S, Zhang J, Pan C, Yuan D, Alici G, Du H, Zhu Y, Li W, J.Micromechanics Microengineering, 25, 084010 (2015)
Zhang J, Yuan D, Zhao Q, Yan S, Tang SY, Tan SH, Guo J, Xia H, Nguyen NT, Li W, Sens. Actuators B-Chem., 267, 14 (2018)
Li H, Bashir R, Sens. Actuators B-Chem., 86, 215 (2002)
Yildizhan Y, Erdem N, Islam M, Martinez-Duarte R, Elitas M, Sensors, 17, 2691 (2017)
Morgan H, Hughes MP, Green NG, Biophys. J., 77, 516 (1999)
Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E, Lab Chip, 15, 1320 (2015)
Piacentini N, Mernier G, Tornay R, Renaud P, Biomicrofluidics, 5, 034122 (2011)
Imasato H, Yamakawa T, Eguchi M, Intelligent Automation & Soft Computing, 18, 139(2012).
Eguchi M, Imasato H, Yamakawa T, World Automation Congress, June, Mexico (2012).
Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI, Lab Chip, 11, 1118 (2011)
Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, et al., Proceedings of the National Academy of Sciences, 201700773 (2017).
Mattsson M, Gromov A, Dittmer S, Eriksson E, Nerushev OA, Campbell EEB, J. Nanosci. Nanotechnol., 7, 3431 (2007)
Chen Z, Wu Z, Tong L, Pan H, Liu Z, Analytical chemistry, 78, 8069 (2006)
Krupke R, Linden S, Rapp M, Hennrich F, Adv. Mater., 18(11), 1468 (2006)
Krupke R, Hennrich F, Lohneysen HV, Kappes MM, Science, 301, 344 (2003)
Dimaki M, Bøggild P, Nanotechnology, 15, 1095 (2004)
Mendes MJ, Schmidt HK, Pasquali M, J. Phys. Chem. B, 112(25), 7467 (2008)
Wu J, Jiao L, Antaris A, Choi CL, Xie L, Wu Y, Diao S, Chen C, Chen Y, Dai H, Small, 9, 4142 (2013)
Ye M, Gao J, Xiao Y, Xu T, Zhao Y, Qu L, Carbon, 125, 299 (2017)
Kim S, Kim SK, Sun P, Oh N, Braun PV, Nano letters, 17, 6893 (2017)
Kolmakov A, Dikin DA, Cote LJ, Huang J, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M, Nature nanotechnology, 6, 651 (2011)
chirmer KSU, Esrafilzadeh D, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG, J. Mater. Chem. B, 4, 1142 (2016)
Feng L, Chang Y, Zhong J, Jia DC, Scientific reports, 8, 10803 (2018)
Lee Y, Park YJ, Kim C, So JH, Yeom B, Koo HJ, Polymer (2019).
Hong SH, Shen TZ, Lee B, Song JK, Particle Particle Systems Characterization, 34, 160034 (2017)
Wijnhoven JEGJ, van't Zand DD, van der Beek D, Lekkerkerker HNW, Langmuir, 21(23), 10422 (2005)
Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO, Angewandte Chemie, 123, 3099 (2011)
Flickinger MC, Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 7 Volume Set; John Wiley & Sons, ISBN, 2010.
Harwood R, Int. Rev. Cytol., 38, 369 (1974)
Yang L, Analytical Letters, 45, 187 (2012)
Tomkins MR, Chow J, Lai Y, Docoslis A, Sens. Actuators B-Chem., 176, 248 (2013)
Enjoji T, Uchida S, Tochikubo F, Intelligent Automation Soft Computing, 18, 153 (2012)
Wang C, Madiyar F, Yu C, Li J, J. Biological Engineering, 11, 9 (2017)
Tran TTH, Nguyen NV, Nguyen NC, Bui TT, Duc TC, International Conference on Advanced Techologies for Communications (ATC), December Hanoi (2016).
He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J, Biosens. Bioelectron., 42, 460 (2013)
Xing X, Yobas L, IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), Jan, San Francisco (2014).
Patel S, Showers D, Vedantam P, Tzeng TR, Qian S, Xuan X, Biomicrofluidics, 69, 034102 (2012)
Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y, Anal. Chem., 76, 1571 (2004)
Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R, Anal. Chem., 83, 9579 (2011)
Huang SB, Liu SL, Li JT, Wu MH, Int. J. Automation Smart Technology, 4, 83 (2014)
Takahashi Y, Takeuchi S, Miyata S, 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC), July, Osaka (2013).
Uchida S, Nakao R, Asai C, Jin T, Shiine Y, Nishikawa H, Intelligent Automation & Soft Computing, 18, 165 (2012).
Lerche D, Bilsing R, Biorheology, 25, 245 (1988)
Hester JP, Kellogg RM, Mulzet AP, Kruger VR, McCredie KB, Freireich EJ, Blood, 54, 254 (1979)
Homsy A, van der Wal PD, Doll W, Schaller R, Korsatko S, Ratzer M, Ellmerer M, Pieber TR, Nicol A, De Rooij NF, Biomicrofluidics, 6, 012804 (2012)
Wang S, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U, Int. J. Nanomedicine, 7, 5019 (2012)
Kuan DH, Wu CC, Su WY, Huang NT, Scientific Reports, 8, 15345 (2018)
Hughes MP, Biomicrofluidics, 10, 032801 (2016)
Pommer MS, Zhang YT, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT, Electrophoresis, 29(6), 1213 (2008)
Siebman C, Velev OD, Slaveykova VI, Biosensors, 7, 4 (2017)
Yin MJ, Huang BB, Zhang AP, Tam HY, Ye XS, IEEE 15th International Conference on Nanotechology (IEEE-NANO), July, Rome (2015).
Mao Q, Fell CJ, Scully AD, Prog. Org. Coat., 76, 51 (2013)
Fukushima T, Ohara Y, Murugesan M, Bea JC, Lee KW, Tanaka T, Koyanagi M, IEEE 61th Electronic Components and Technology Conference (ECTC), June, Lake Buena Vista (2011).
Bhatt KH, Velev OD, Langmuir, 20(2), 467 (2004)
Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD, Science, 294, 1082 (2001)
Pescaglini A, Emanuele U, O'Riordan A, Iacopino D, J. Phys. Conference Series, 307, 012051 (2011)
Sarker BK, Shekhar S, Khondaker SI, ACS nano, 5, 6297 (2011)
An L, Friedrich C, Progress in Natural Science:Materials International, 23, 367(2013).
Wu PF, Lee GB, Advances in OptoElectronics (2011).
Seichepine F, Salomon S, Collet M, Guillon S, Nicu L, Larrieu G, Flahaut E, Vieu C, Nanotechnology, 23, 095303 (2012)
Suehiro J, Zhou G, Hara M, Sens. Actuators B-Chem., 105, 164 (2005)
Suehiro J, Zhou G, Imakiire H, Ding W, Hara M, Sens. Actuators B-Chem., 108, 398 (2005)
Suehiro J. Sano N, Zhou G, Imakiire H, Imasaka K, Hara M, J. Electrostatics, 64, 408 (2006)
Hashim U, Low FW, Liu WW, J. Nanomaterials, 2013, 139 (2013)
Wang J, Singh B, Park JH, Rathi S, Lee IY, Maeng S, Joh HI, Lee CH, Kim GH, Sens. Actuators B-Chem., 194, 296 (2014)