Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 26, 2018
Accepted March 18, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
저생 미생물 연료전지(BMFC)의 구동조건에 따른 성능 변화
Variation of Performance with Operation Condition of Benthic Microbial Fuel Cells
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315 1㈜ETIS, 10122 황색로45번길 97
Department of Chemical Engineering, Sunchon National University, 315, Maegok-dong, Suncheon, Jeonnam, 57922, Korea 1ETIS Co, 97, Hwangsaek-ro 45beon-gil, Gochon-eup, Gimpo-si, Gyeonggi-do, 10122, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, April 2019, 57(2), 172-176(5), 10.9713/kcer.2019.57.2.172 Epub 5 April 2019
Download PDF
Abstract
저생 미생물 연료전지(BMFC)는 바다나 호수의 뻘 속에서 저생미생물이 유기물을 분해하면서 발생시키는 전기를 이용한 연료전지다. 본 연구에서는 BMFC 전극으로 카본 소재를 발수 처리한 고분자 전해질 연료전지(PEMFC)의 가스확산층(GDL)을 사용해서 성능이 높게 나오는 구동조건을 찾고자 하였다. 높은 저항 값을 갖는 외부저항을 사용했을 때 성능이 높았으며 바닷물에서 리드선의 부식에 의한 전극과 접촉저항 증가를 피해야 성능을 유지할 수 있었다. 기포 발생기를 사용해 최고출력밀도를 2배 이상 높일 수 있었고 최적 구동 온도는 40 °C 였다.
A benthic microbial fuel cells(BMFC) is fuel cell using electricity produced by decomposing organic matter in a sea or a lake. In this study, we used a gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEMFC) as a BMFC electrode to find out the operation conditions with high performance. The performance of BMFC was increased as resistance of external resistor increased. It was possible to maintain the performance by avoiding the increase of the contact resistance with the electrode due to corrosion of the lead wire in seawater. The bubble generator was able to increase the maximum power density by more than 2 times and the optimum operating temperature was 40 °C.
Keywords
References
Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 371, 1 (2013)
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355 (2011)
Yeung AT, Sep. Purif. Technol., 79(2), 124 (2011)
Pandey B, Fulekar MH, Biol. Med., 4(1), 51 (2012)
Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York(2011).
Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058 (2006)
Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192 (2001)
Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468 (2007)
Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41, 4053 (2007)
Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364 (2006)
Karra U, Huang GX, Umaz R, Tenaglier C, Wang L, Li BK, Bioresour. Technol., 144, 477 (2013)
Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6 (2013)
Fadzillah DM, Rosli MI, Talib MZM, Kamarudin SK, Daud WRW, Renew. Sust. Energ. Rev., 77, 1001 (2017)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Karra U, Muto E, Umaz R, Kolln M, Santoro C, Wang L, Li BK, Int. J. Hydrog. Energy, 39(36), 21847 (2014)
Li HN, He WH, Qu YP, Li C, Tian Y, Feng YJ, J. Power Sources, 356, 430 (2017)
Mahendiravarman E, Sangeetha D, J. Power Sources, 38, 2471 (2013)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Martins G, Peixoto L, Ribeiro DC, Parpot P, Brito AG, Nogueira R, Bioelectrochemistry, 78, 67 (2010)
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355 (2011)
Yeung AT, Sep. Purif. Technol., 79(2), 124 (2011)
Pandey B, Fulekar MH, Biol. Med., 4(1), 51 (2012)
Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York(2011).
Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058 (2006)
Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192 (2001)
Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468 (2007)
Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41, 4053 (2007)
Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364 (2006)
Karra U, Huang GX, Umaz R, Tenaglier C, Wang L, Li BK, Bioresour. Technol., 144, 477 (2013)
Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6 (2013)
Fadzillah DM, Rosli MI, Talib MZM, Kamarudin SK, Daud WRW, Renew. Sust. Energ. Rev., 77, 1001 (2017)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Karra U, Muto E, Umaz R, Kolln M, Santoro C, Wang L, Li BK, Int. J. Hydrog. Energy, 39(36), 21847 (2014)
Li HN, He WH, Qu YP, Li C, Tian Y, Feng YJ, J. Power Sources, 356, 430 (2017)
Mahendiravarman E, Sangeetha D, J. Power Sources, 38, 2471 (2013)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Martins G, Peixoto L, Ribeiro DC, Parpot P, Brito AG, Nogueira R, Bioelectrochemistry, 78, 67 (2010)