ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 28, 2018
Accepted December 21, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, 237, Siheung-si, Gyeonggi-do, 15073, Korea
Korean Chemical Engineering Research, April 2019, 57(2), 185-197(13), 10.9713/kcer.2019.57.2.185 Epub 5 April 2019
downloadDownload PDF

Abstract

Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and TiO2 nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, α = α 0 exp(-kdt). The retardation constant (kd) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and TiO2 nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

References

Kant R, Natural Sciences, 4(1), 22 (2012)
Jin YZ, Zhang YF, Li W, J. Environ. Sci., 15(3), 334 (2003)
Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172 (2014)
Tichonovas M, Krugly E, Racys V, Hippler R, Kauneliene V, Stasiulaitiene I, Martuzevicius D, Chem. Eng. J., 229, 9 (2013)
Shah GN, Lemilch R, Ind. Eng. Chem. Fundam., 9(3), 350 (1970)
Chopra AK, Sharma AK, Kumar V, Arch. Appl. Sci. Res., 3(5), 191 (2011)
Zacharakis A, Chatzisymeon E, Binas V, Frontistis Z, Venieri D, Mantzavinos D, Int. J. Photoenergy, 2013, 1 (2013)
Cho YS, Oh IA, Jeong NR, J. Dispersion Sci. Technol., 37, 676 (2016)
Cloteaux A, Gerardin F, Thomas D, Midoux N, Andre JC, Chem. Eng. J., 249, 121 (2014)
Katz A, McDonagh A, Tijing L, Shon HK, Crit. Rev. Environ. Sci. Technol., 45, 1880 (2015)
Cho YS, Shin CH, Han S, Nanoscale Res. Lett., 11, 46 (2016)
Cho YS, Roh SH, J. Dispersion Sci. Technol., 39(1), 33 (2018)
Oh IA, Shin CH, Cho YS, Korean J. Met. Mater., 54(8), 573 (2016)
Hema M, Arasi AY, Anderson R, Chem. Sci. Trans., 2(1), 239 (2013)
Mocan L, Tabaran FA, Mocan T, Bele C, Orza AI, Lucan C, et al., Int. J. Nanomed., 6, 915 (2011)
Djokic VR, Janackovic DT, Ceram. Int., 38(8), 6123 (2012)
Jiang T, Yin H, Particuology, 11(6), 737 (2013)
Dutta S, J. Inst. Eng. Ser. E., 93(1), 25 (2012)
Gueon D, Hwang JT, Yang SB, Cho E, Sohn K, Yang DK, Moon JH, ACS Nano., 12(1), 226 (2018)
Kim C, Kim K, Moon JH, Sci. Rep., 7, 14400 (2017)
Gandhi VG, Mishra MK, Joshi PA, J. Ind. Eng. Chem., 18(6), 1902 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로